

Mark Scheme (Results) June 2010

GCE

GCE Physics (6PH05)

Question	Answer	Mark
Number		
1	В	(1)
2	D	(1)
3	A	(1)
4	В	(1)
5	С	(1)
6	D	(1)
7	C	(1)
8	С	(1)
9	C	(1)
10	В	(1)

Question	Answer		Mark
11(a)	(Net force) (Δ)F=-k(Δ)x	(1)	
	Used with F=ma	(1)	(2)
11(b)	Use of F=(-)kx	(1)	(-/
	Correct answer for k OR substitution of expression for k into formula below	(1)	
	Use of $\omega^2 = k/m$ OR $T = 2\pi \sqrt{\frac{m}{k}}$ OR $a_{max} = -\omega^2 A$, with $a_{max} = 9.81$ Nkg ⁻¹	(1)	
	Use of $\omega = 2\pi f \text{ OR } f = 1/T$	(1)	
	Correct answer for f	(1)	(E)
	Example of calculation:		(5)
	$k = \frac{0.15 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{0.2 \text{ m}} = 7.4 \text{ Nm}^{-1}$		
	$\omega = \sqrt{\frac{7.4 \mathrm{N} \mathrm{m}^{-1}}{0.15 \mathrm{kg}}} = 7.0 \left(\mathrm{rad} \mathrm{s}^{-1}\right)$		
	$f = \frac{\omega}{2\pi} = \frac{7 s^{-1}}{2\pi} = 1.1 Hz$		
	Total for question 11		(7)

Question	Answer		Mark
Number			
12(a)	β -particles can (easily) penetrate the body/skin	(1)	
	Since they are not very ionising OR reference to what will stop them	(1)	(2)
12(b)(i)	Use idea that number of unstable atoms halves every 8 days OR that 24 days represents 3 half-lives	(1)	(2)
	Correct answer	(1)	(2)
	Example calculation:		
	$N_0 \rightarrow \frac{N_0}{2} \rightarrow \frac{N_0}{4} \rightarrow \frac{N_0}{8}$		
	$t = 0$ $t = t_{\frac{1}{2}}$ $t = 2t_{\frac{1}{2}}$ $t = 3t_{\frac{1}{2}}$		
	Fraction decayed = 100% - 12.5% = 87.5%		
12(b)(ii)	Use of $\lambda T_{1/2} = In2$	(1)	
	Use of an appropriate decay equation	(1)	
	Correct answer	(1)	(3)
	Example of calculation:		(3)
	$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}} = \frac{0.693}{8 \text{day}} = 0.0866 \text{day}^{-1}$		
	$1.50\mathrm{MBq} = \mathrm{A_0}\mathrm{e}^{-0.0866\mathrm{day}^1 \times 1\mathrm{day}}$		
	$A_0 = 1.50 MBq e^{0.0866} = 1.64 MBq$		
	Total for quastion 12		(7)
			(7)

Question	Answer	Mark
Number	Idea that the Earth is orbiting the Sun (1)	
13(a)	(i)	
	Reference to (trigonometric) parallax(1)	
	Idea that more distant stars have "fixed" positions (1)	(3)
13(b)	Diagram to show how to measure angular displacement of star over a 6 month period	
	e.g.	
	nearby star	
	101 10	
	Eig fined	
	dialant	
	stars	
	1-102	
	E	
	(1)	
	[Diagram should indicate the Earth in two positions at opposite ends of a diameter, with lines drawn heading towards a point with a relevant angle marked; accept the symmetrical diagram seen in many textbooks.]	
	Use trigonometry to calculate the distance to the star (1)	
	[May be indicated by an appropriate trigonometric formula. Do not accept use of Pythagoras]	
	Need to know the diameter/radius of the Earth's orbit about the Sun (1)	(3)
	[This may be marked on the diagram or seen in a trigonometric formula]	
13(c)	Standard candle/Cepheid variable/supernovae(1)	
	Total for question 12	(1)
	Total for question 13	(/)

Question	Answer		Mark
14(a)	Alpha-radiation only has a range of a few cm in air / cannot penetrate		
	walls of container / skin	(1)	(1)
14(b)(i)	Top line: $^{241}Am ^{237}Np ^4\alpha$	(1)	
	Bottom line: ${}_{95}Am_{93}Np_2\alpha$	(1)	(2)
14(b)(ii)	Attempt at calculation of mass defect	(1)	
	Use of $(\Delta)E=c^2(\Delta)m$ OR use of 1 u = 931.5 MeV	(1)	
	Correct answer [5.65 MeV; accept 5.6 - 5.7 MeV]	(1)	
	Example of calculation: $\Delta m = 241.056822 u - 237.048166 u - 4.002603 u = 0.006053 u$		(3)
	$\Delta m = 0.006053u \times 1.66 \times 10^{-27} \text{ kg } u^{-1} = 1.005 \times 10^{-29} \text{ kg}$		
	E = $1.005 \times 10^{-29} \text{ kg} \times (3 \times 10^8 \text{ ms}^{-1})^2 = 9.04 \times 10^{-13} \text{ J}$		
	$E = \frac{9.04 \times 10^{-13} \text{ J}}{1.6 \times 10^{-13} \text{ MeV J}^{-1}} = 5.65 \text{ MeV}$		
14(c)	Reference to half-life and typical lifespan	(1)	(1)
	Total for question 14	<u> </u>	(7)

Question	Answer		Mark
15(a)(i)	Use of λ_{max} T=2.898 × 10 ⁻³	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$T = \frac{2.898 \times 10^{-3} \text{ mK}}{-5570 \text{ K}}$		
	$1 = \frac{1}{5.2 \times 10^{-7}} \text{ m}^{-5570} \text{ K}$		
15(a)(ii)	Use of $F=L/4\pi d^2$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	L = 1370 Wm ⁼² × 4 π × (1.49 × 10 ¹¹ m) ² = 3.8 × 10 ²⁶ W		
15(a)(iii)	Use of L= $4\pi r^2 \sigma T^4$	(1)	
	Correct answer (7.46 \times 10 ⁸ m)	(1)	(2)
	Example of calculation:		
	$3.82 \times 10^{26} \text{ W}$ 5.57 × 10 ¹⁷ m ²		
	$\Gamma = \frac{1}{4\pi \times 5.67 \times 10^{-8} \mathrm{Wm^{-2} K^{-4} \times (5570 \mathrm{K})^{4}}} = 5.57 \times 10^{-11} \mathrm{Mm^{-2} K^{-4} \times (5570 \mathrm{K})^{4}}$		
	$r = \sqrt{5.57 \times 10^{17} m^2} = 7.46 \times 10^8 m$		
	$3.8 \times 10^{-26} \text{ W} 4 \times 10^{26} \text{ W}$		
	5570 K 7.46 7.6		
	6000 K 0.4 0.0		
15(b)	The answer must be clear, use an appropriate style and be organised in logical sequence	na	
QWC	High temperature AND high density/pressure	(1)	
	Any two reasons from:		
	Overcome coulomb/electrostatic repulsion	(1)	
	<u>Nuclei</u> come close enough to fuse/for strong (nuclear) force to act	(1)	(2001)
		(1)	(max 3)
	Total for question 15		(9)

Question	Answer	Mark
Number		
16(a)	Any two from:	
	Air behaves as an ideal gas (1)	
	Temperature (in the lungs) stays constant (1)	
	Implication of no change in mass of gas (1)	(max 2)
16(b)(i)	Use of $\rho = m/V$ (1)	
	Correct answer $(1.3 \times 10^{-4} \text{ kg s}^{-1})$ (1)	(2)
	Example of calculation:	
	$m = V.\rho = 2.5 \times 10^{-4} \text{ m}^3 \times 1.2 \text{ kg m}^{-3} = 3 \times 10^{-4} \text{ kg}$	
	$\frac{\Delta m}{\Delta t} = 3 \times 10^{-4} \text{ kg} \times \frac{25}{60 \text{ s}} = 1.25 \times 10^{-4} \text{ kg} \text{ s}^{-1}$	
16(b)(ii)	Use of $\Delta E = mc\Delta\theta$ (1)	
	Correct answer (2.2 W) ecf	(2)
	(1)	
	Example of calculation:	
	$P = 1.25 \times 10^{-4} \text{ kg s}^{-1} \times 1000 \text{ J kg}^{-1} \text{ K}^{-1} \times (37.6 - 20.0) \text{ K} = 2.2 \text{ W}$	
	Total for question 16	(6)

Question Number	Answer		Mark
17(a)(i)	Calculation of time period	(1)	
	Use of $v = \frac{\Delta s}{\alpha r}$ or $\omega = \frac{2\pi}{\alpha r}$	(1)	
	Δt Δt T	(.,	
	Use of $a = \frac{v^2}{r}$ or $a = r\omega^2$	(1)	
	Correct answer	(1)	
	Example of calculation:		
	$T = \frac{24 \times 60 \times 60 s}{15} = 5760 s$		(4)
	$v = \frac{2\pi r}{T} = \frac{2\pi \times 6.94 \times 10^6 m}{5760 s} = 7.57 \times 10^3 m s^{-1}$		
	$a = \frac{v^2}{r} = \frac{\left(7.6 \times 10^3 \ ms^{-1}\right)^2}{6.94 \times 10^6 \ m} = 8.26 \ ms^{-2}$		
	OR		
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{5760s} = 1.09 \times 10^{-3} ms^{-1}$		
	$a = r\omega^2 = 6.94 \times 10^6 \times (1.09 \times 10^{-3})^2 = 8.26 ms^{-2}$		
17(a)(ii)	mg equated to gravitational force expression	(1)	
	g (= a) = 8.3 ms ⁻² substituted	(1)	
	Correct answer	(1)	(3)
	Example of calculation:		
	$mg = \frac{GMm}{r^2}$		
	$\therefore 8.3 \mathrm{ms}^{-2} = \frac{6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2} \mathrm{M}}{\left(6.94 \times 10^6 \mathrm{m}\right)^2}$		
	$\therefore M = \frac{8.3 \text{ ms}^{-1} \times (6.94 \times 10^6 \text{ m})^2}{6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}} = 6.0 \times 10^{24} \text{ kg}$		
17(b)	The observed wavelength is longer than the actual wavelength / the wavelength is stretched out	(1)	
	One from: The universe is expanding (All distant) <u>galaxies</u> are moving apart The (recessional) velocity of <u>galaxies</u> is proportional to distance The furthest out <u>galaxies</u> move fastest	(1) (1) (1) (1)	(max 2)

17(c)(i)	A light year is the distance travelled (in a vacuum) in 1 year by light / em-radiation	(1)	
	The idea that light has only been able to travel to us for a time equal to the age of the universe.	(1)	(2)
17(c)(ii)	(Use of v = H _o d to show) $H_o = \frac{1}{t}$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$H_o = \frac{1}{t} = \frac{1}{12 \times 3.15 \times 10^{16} s} = 2.65 \times 10^{-18} s^{-1}$		
17(c)(iii)	The answer must be clear and be organised in a logical sequence		
0.440	There is considerable uncertainty in the value of the Hubble constant	(1)	
QWC	Any sensible reason for uncertainty	(1)	
	Idea that a guess implies a value obtained with little supporting evider	nce	
	OR the errors are so large that our value is little better than a guess	(1)	
			(3)
	Total for question 17		(16)

Question	Answer		Mark
Number	Posonanco	(1)	
10(a)	System driven at / near its natural frequency	(1)	
	aystern driven dt 7 hedr its <u>naturar</u> frequency	(1)	(2)
18(b)(i)	Any zero velocity point	(1)	(1)
18(b)(ii)	Any maximum/minimum velocity point	(1)	(1)
18(c)	Select 70 mm distance from passage/see 35 mm	(1)	
	Use of a = $-\omega^2 x$	(1)	
	Use of $v = \omega A$	(1)	
	Correct answer	(1)	
	Example of calculation:		(4)
			(4)
	$0.89 \mathrm{ms}^{-1}$		
	$\omega = \sqrt{\frac{0.07 \text{ ms}}{2.5 \text{ ms}^{-1}}} = 5.04 \text{ rad s}^{-1}$		
	√ 3.5×10 ⁻ m		
	$v = \omega A = 5.04 s^{-1} \times 3.5 \times 10^{-2} m = 0.18 m s^{-1}$		
18(d)	The answer must be clear and be organised in a logical sequence		
	The springs/dampers absorb energy (from the bridge)	(1)	
owc	The springs dampers absorb energy (non-the bridge)	(1)	
	(Because) the springs deform/oscillate with natural frequency of the		
	bridge	(1)	
	Hence there is an efficient/maximum transfer of energy	(1)	
	Springs/dampers must not return energy to bridge / must dissinate		
	the energy	(1)	
		()	(max 3)
	Total for question 18		(11)

Mark Scheme (Results) January 2011

GCE

GCE Physics (6PH05) Paper 01

Section A

Question	Answer	Mark
Number		
1	D	1
2	С	1
3	D	1
4	С	1
5	В	1
6	В	1
7	В	1
8	В	1
9	Α	1
10	D	1

Question	Answer		Mark
11(a)	Use of $pV = NkT$	(1)	
	T = 870 (K) OR $p = 12.4$ (atmospheres)	(1)	2
	If final pressure is given as 1.24×10^6 Pa, then just "use of" mark		
	Example of calculation: $T = \frac{pV}{Nk} = \frac{12 \times 1.0 \times 10^5 \text{ Nm}^{-2} \times 3.00 \times 10^{-4} \text{ m}^3}{3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1}} = 869.6 \text{ K}$		
	OR		
	$p = \frac{NkT}{V} = \frac{3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1} \times 900 \text{ K}}{3 \times 10^{-4} \text{ m}^3}$		
	$\therefore p = 1.24 \times 10^6 \text{ Pa} = \frac{1.24 \times 10^6 \text{ Pa}}{3 \times 10^{-4} \text{ Pa}} = 12.4$		
11(b)*	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	5	
	Atoms/molecules would gain energy	(1)	
	<u>Atoms/molecules</u> would escape from the liquid OR liquid propellant would vaporise / turn into gas OR the amount of gas in can would		
	increase	(1)	
	Pressure would increase due to both temperature/energy increase an increase in amount of gas	d	
	OR pressure would increase more for the same temperature increase OR pressure would be greater than 12 atmospheres before 900 K	(1)	Max 3
	Can would explode before 900 K reached	(1)	
	lotal for question 11		5

Question	Answer		Mark
Number			
12(a)	Use of $L/4\pi d^2$ or $F \propto 1/d^2$	(1)	
	$F_{\rm mars} / F_{\rm earth} = 0.43$	(1)	2
	Accept 1 : 2.35 or other ratio simplifying to 0.43		
	Example of calculation		
	$F = \frac{L}{4\pi\pi^2}$		
	$\frac{F_{\text{mars}}}{F_{\text{earth}}} = \frac{d_{\text{earth}}^2}{d_{\text{mars}}^2} = \left(\frac{1.5 \times 10^{11} \text{ m}}{2.3 \times 10^{11} \text{ m}}\right)^2 = 0.43$		
12(b)	Observation that (radiation) flux is about half that on the Earth OR Earth as about double the (radiation) flux of Mars (ecf answer to (a))	arth (1)	
	Sensible comment that makes reference to energy/intensity/number or photons OR sensible comparison with polar or deep sea regions on the Earth	f	
	OR reference to a thinner atmosphere (allowing a greater fraction of photons get through to surface)	(1)	2
	Total for question 12		4

Question	Answer	Mark
Number		
13(a)	Object must have a standard/known luminosity OR luminous properties	
	independent of its position (1)	
	It can be used to calculate distances (1)	
	Reference to any two of the following:	
	◆ Radiation/energy flux <u>measured</u> (1)	
	◆ Observed brightness compared with luminosity (1)	
	◆ Use of inverse square law [accept if equation quoted] (1)	Max 4
	• Object must be commonly found in the universe (1)	
13(b)	When star contracts (front of) star is moving away from observer OR	
	explanation in terms of a rotating/binary star (1)	
	Movement away from observer results in a decrease in the frequency of the radiation/red shift (1)	2
	Accept converse argument for an expanding star	
	Total for question 13	6

Question	Answer		Mark
Number			
14(a)(i)	Use of πr^2 or $\pi d^2/4$	(1)	
	Use of $\rho=m/V$	(1)	
			3
	m = 1960 (kg)	(1)	-
	Reverse argument leading to $\rho = 9130$ (kg m ⁻³) scores max 2		
	Example of calculation		
	$V = \pi r^2 \ell = \pi \times (0.815 \times 10^{-3} m)^2 \times 105 \times 10^3 m = 0.219 m^3$		
	$= 10^{-10} - 10^{-10$		
	$m = \rho V = 8960 \text{ kgm}^{-1} \times 0.219 \text{ m}^{-1} = 1962 \text{ kg}^{-1}$		
14(0)(ii)		(1)	
14(a)(II)	Use of $\Delta E = mc\Delta T$	(1)	
	$\Delta E = 8.0 imes 10^8 ~ { m J}$	(1)	2
	$\Delta E = 8.2 \times 10^8$ J if show that value used		
	Example of calculation		
	$\Delta E = m_c \Delta \theta = 1962 \text{ kg} \times 385 \text{ IK}^{-1} \text{ kg}^{-1} \times (1085 - 25) \text{ K} = 8.0 \times 10^8 \text{ J}$		
14(b)	Idea that whilst copper is being heated to melting point, energy sup	plied	
	is (mainly) transformed into K.E. of atoms/molecules	(1)	
	At melting point:		
	no change in K.E. of atoms/molecules OR energy supplied is		2
	transformed into P.E. of atoms/molecules	(1)	2
	Total for question 14		7

Question Number	Answer		Mark
15(a)(i)	Use of $\omega = 2\pi/T$	(1)	
	$\omega = 2.66 \times 10^{-6} (\mathrm{rad \ s^{-1}})$	(1)	2
	Example of calculation		
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{27.3 \times 24 \times 3600 \text{ s}} = 2.66 \times 10^{-6} (\text{rad}) \text{ s}^{-1}$		
15(a)(ii)	See $(F =) \frac{Gm_1m_2}{r^2}$	(1)	
	Evidence that gravitational force equated to centripetal force	(1)	
	Correct substitution [e.c.f.]	(1)	
	$r = 3.92 \times 10^8 \mathrm{m}$	(1)	4
	If show that value is used, $r = 3.62 \times 10^8$ m		
	Example of calculation		
	$\frac{GMm}{2} = m\omega^2 r$		
	$r^3 = \frac{GM}{\omega^2}$		
	$\therefore \mathbf{r} = \sqrt[3]{\frac{6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{kg}^{-2} \times 6.4 \times 10^{24} \mathrm{kg}}{\left(2.66 \times 10^{-6} \mathrm{s}^{-1}\right)^2}} = 3.92 \times 10^8 \mathrm{m}$		
15(b)(i)	Max two from:		
	Gravitational force on moon is reduced	(1)	
	• (Therefore) ω or V is decreased • (Hence) the orbital time increases	(1) (1)	
	• (Hence) the orbital time increases • Valid reference to Kepler's law: $T^2 \alpha r^3$	(1) (1)	
15(b)(ii)	Pata of ingrassa = 4 (om per view)	(1)	Max 2
13(6)(11)	Kate of increase – 4 (cill per year)	(1)	I
	Example of calculation		
	Rate of increase = $800 \text{ cm} / 200 \text{ yr} = 4 \text{ cm yr}^{-1}$		
15(b)(iii)*	(QWC – Work must be clear and organised in a logical manner usin	g	
	technical wording where appropriate)		
	Answers based on expanding universe/galaxies/stars do not gain cre	dit	
	Idea that in the past the moon was closer OR the gravitational pull		
	would have been larger	(1)	
	In the past the tidal effects would have been greater/stronger	(1)	3
	Total for question 15	(1)	12

Question	Answer		Mark
Number			
16(a)(i)	Use of $f=1/T$	(1)	
	f = 8 Hz	(1)	2
	Example of calculation		
	$f = \frac{1}{T} = \frac{1}{2 \times 0.0625 s} = 8 Hz$		
16(a)(ii)	At the equilibrium (position) / centre of the oscillation / mid-point	(1)	1
16(a)(iii)	Use of $v_{max}=2\pi fA$ OR $v_{max}=\omega A$	(1)	
	$v_{max} = 2.5 \text{ ms}^{-1}$ [ecf for (a)(i), see table below]	(1)	2
	Example of calculation		
	$v = 2\pi f A = 2\pi \times 8s^{-1} \times 5 \times 10^{-2} m = 2.5 m s^{-1}$		
16(b)(i)	Idea that the system is forced / driven into oscillation at / near its <u>natural</u> frequency		
	OR driver / forcing frequency is equal / near to <u>natural</u> frequency	(1)	
	Leads to large/max energy transfer OR large/max/increasing amplitude	(1)	2
16(b)(ii)	Max 2		
	 Rubber feet (deform and) absorb (vibration) energy 	(1)	
	Reference to damping	(1)	
	 Idea that energy is removed from system 	(1)	max 2
	Hence amplitude does not build up	(1)	
	Total for question 16		9

When marking 16(a)(iii) the table below may be helpful:

f/Hz	A/cm	v/ms ⁻¹	Marks
8	5	2.5	2
16	5	5	2
8	10	5	1
16	10	10	1

Question	Answer		Mark
Number			
17(a)*	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	Appropriate reference to the following:		
	 The penetrating power of beta radiation 		
	 The ionising effects of the beta radiation 		
	The shielding effect that the cylinder might have had		may 2
	The constant activity over the 5 day period		max 3
	, , , , , , , , , , , , , , , , , , ,		
	Examples of responses:		
	Beta radiation is (moderately) ionising		
	Beta radiation is able to penetrate the body		
	Once inside the body beta radiation may damage / kill / mutate / alter		
	DNA of cells		
	Beta radiation is absorbed by a few mm of aluminium		
	Cylinder may have reduced the radiation to safe levels / absorbed the		
	beta radiation		
	Greater risk of avposure if culinder demaged or creaked		
	Greater fisk of exposure if cylinder damaged of cracked		
	Long half life means that:		
	Long nan me means that.		
17(h)	source stays active for a long time/activity unlikely to lower over 5 days		
17(0)	Top line: 137 Ba 0 B ⁻	(1)	
	rop me. P	(1)	
	Bottom line: $5 \in Ba$ β^-	(1)	2
17(c)(i)	Connect identificantials at an (martials arith to the mart to do one	(1)	
17(0)(1)	Cannot identify which atom/nucleus/particle will be the next to decay		
	OK cannot say when a given atom/nucleus/particle will decay		
	OR cannot state exactly how many atoms/nuclei/particles will decay in a		
	set time		
	OR can only estimate the fraction of the total number that will decay in		1
	the next time interval	(1)	

17(c)(ii)	Use of $\lambda T_{1/2} = \ln 2$	(1)	_
	Decay constant, $\lambda = 7.3 \times 10^{-10} (s^{-1})$	(1)	2
	Example of calculation		
	$\lambda = \frac{\log_e 2}{T_{\frac{1}{2}}} = \frac{0.693}{30 \times 365 \times 24 \times 3600 \mathrm{s}} = 7.32 \times 10^{-10} \mathrm{s}^{-1}$		
17(d)	Use of $\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_0 e^{-\lambda t}$	(1)	
	activity = 3.3×10^{13} Bq [3.3×10^{13} Bq if show that value used] Use of $dN/dt = \lambda N$ $N = 4.5 \times 10^{22}$ [4.8×10^{22} if show that value used]	 (1) (1) (1) 	4
	OR	(1)	
	Use of $dN/dt = \lambda N_o$ N _o = 7.1 × 10 ²² [N _o = 7.4 × 10 ²² if show that value used]	(1) (1)	
	Use of $N = N_0 e^{-\lambda t}$	(1)	
	$N = 4.5 \times 10^{22} [4.8 \times 10^{22} \text{ if show that value used}]$ Example of calculation	(1)	
	$\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_{0} e^{-\lambda t} = 5.2 \times 10^{13} \text{ Bq} \times e^{-7.32 \times 10^{-10} \text{ s}^{-1} \times 20 \times 365 \times 24 \times 3600 \text{ s}}$		
	$= 3.28 \times 10^{13} \text{ Bq}$		
	$N = \frac{dN/dt}{\lambda} = \frac{3.28 \times 10^{13} \text{ s}^{-1}}{7.32 \times 10^{-10} \text{ s}^{-1}} = 4.48 \times 10^{22}$		
17(e)(i)	$^{95}_{37}Rb + 4 \times ^{1}_{0}n$	(1)	1
17(e)(ii)	Idea that at least one neutron needs to be available to be absorbed for a chain reaction to be sustained	(1)	
	Appreciation of the need to control/limit/restrict the number of neutrons (which can go on to produce another fission)	(1)	2
	Total for question 17		12

Question	Answer		Mark
Number			
18(a)	Max 4		
	Assumption: that no energy is transferred to the surroundings OR all ene	rgy	
	transferred from washers to water OR energy required to raise temperatu	re	
	of container is negligible OR no water evaporates	(1)	
	Measure the mass of the washers and water (using a balance)	(1)	
	(Use a thermometer to) measure the temperature of the water before and		
	after the washers are plunged into the water	(1)	
		(1)	
	Equate thermal energy lost by steel to the energy gained by water	(1)	
			Max 4
	OB anasific heat consists of water is known	(1)	
10/h)/i)	UR specific near capacity of water is known	(1)	1
10(D)(I) 10(b)(ii)	Infra-red $\mathbf{L} = \mathbf{L} = \mathbf{L} = \mathbf{L} = \mathbf{L} = \mathbf{L}$	(1)	1
10(0)(11)	Use of $\lambda_{\text{max}} 1 = 2.898 \times 10^{-5}$	(1)	
	$T = 1450 (\text{K})$ OR $\lambda_{\text{max}} = 1.93 \times 10^{-6} (\text{m})$	(1)	2
	Example of calculation		
	$2.898 \times 10^{-3} \text{ mK}$ 1450 K		
	$I = \frac{1}{2 \times 10^{-6}} \text{ m} = 1430 \text{ K}$		
18(b)(iii)	Use of $I = 4\pi r^2 \sigma T^4$	(1)	
	Correct substitution of radius	(1)	
	L = 1970 W [2250 W if show that value used]	(1)	3
		(1)	
	Example of calculation		
	$L = 4\pi \times (2.5 \times 10^{-2} \text{ m})^2 \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4} (1450 \text{ K})^4 = 1970 \text{ W}$		
18(b)(iv)	Curve with higher peak	(1)	
	Shifted over to left	(1)	2
	Total for question 18		12

Mark Scheme (Results)

June 2011

GCE Physics (6PH05) Paper 01 Physics from Creation to Collapse

Question	Answer	Mark
Number		
1	Α	1
2	D	1
3	Α	1
4	D	1
5	С	1
6	D	1
7	С	1
8	В	1
9	D	1
10	Α	1

Question	Answer	Mark
Number		
11(a)	(A star/astronomical) object of known luminosity (due to some	1
	(1)	•
11(b)	Use of $F=L/4\pi d^2$ (1)	
	$F = 1.09 \times 10^{-7} \mathrm{W} \mathrm{m}^{-2} \tag{1}$	2
	Example of calculation $F = \frac{L}{4\pi d^2} = \frac{8.94 \times 10^{27} \text{W}}{4\pi (8.08 \times 10^{16} \text{m})^2} = 1.0896 \times 10^{-7} \text{ W m}^{-2}$	
	Total for question 11	3

Question	Answer	Mark
Number		
12(a)	See $F = mg$ and $F = (-)GmM/r^2$ (1)	
	Equate and cancel m on either side (1)	2
12(b)	Substitute into $g = GM/r^2$ to obtain $g = 9.78$ N kg ⁻¹ [condone m s ⁻²] (1)	1
	Example of calculation	
	$GM_{-}6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^2 \times 5.97 \times 10^{24} \text{ kg}_{-}0.782 \text{ N km}^{-1}$	
	$g = \frac{1}{r^2} = \frac{1}{(6.38 \times 10^6 \text{ m})^2} = 9.763 \text{ Kg}^2$	
	Total for question 12	3

Question	Answer	Mark
Number		
13(a)	Use of $P=IV$ (1)	
• •	I = 9.1 A (1)	2
	Example of calculation	
	P 2100 W	
	$I = \frac{1}{V} = \frac{1}{230 \text{ V}} = 9.13 \text{ A}$	
13(b)(i)	Use of $\Delta E = mc\Delta\theta$ (for $t = 1s$) (1)	
	$\theta = 51^{\circ} \text{C or } 324 \text{ K} \tag{1}$	2
	Example of calculation	
	ΔE 2100]	
	$\Delta \theta = \frac{1}{mc} = \frac{1}{0.068 \text{ kg} \times 1010 \text{ J kg}^{-1} \text{ °C}^{-1}} = 30.6 \text{ °C}$	
	$\theta = 30.6 \pm 20 = 50.6^{\circ}$ C	
12(b)(ii)	$\frac{1}{1} = 50.0 + 20.0 + 20$	
	(1)	
	$\begin{bmatrix} V_{\text{instig}} & \sigma_{\text{instig}} \\ \sigma_{\text{instig}} \\ \sigma_{\text{instig}} & \sigma_{\text{instig}} \\ \sigma_{\text{instig}} & \sigma_{\text{instig}} \\ \sigma_{\text{instig}} & \sigma_{\text{instig}} \\ \sigma_{\text{instig}} & \sigma_{\text{instig}} \\ \sigma_{\text{instig}} \\ \sigma_{\text{instig}} \\ \sigma_{\text{instig}} \\ \sigma_{\text{instig}} \\ \sigma_{insti$	2
	$\begin{bmatrix} \text{Kinetic energy } [E_k] \text{ of (air) molecules is increased} \end{bmatrix} $ (1)	2
		1
	lotal for question 13	6

Question	Answer	Mark
14(a)(i)	Use of $p/T = a \text{ constant}$ (1) $p = 1.8 \times 10^5$ (Pa) (no ue) (1) Example of calculation $\frac{p_2}{T_2} = \frac{p_1}{T_1}$ $\therefore p_2 = \frac{(273+40) \text{ K} \times 1.65 \times 10^5 \text{ Pa}}{(273+20) \text{ K}} = 1.76 \times 10^5 \text{ Pa}$	2
14(a)(ii)	Air behaves as an ideal gas / mass of air remains constant / number of molecules remains constant/same amount of air/number of moles (1) remains constant/no air escapes	1
14(b)	Use of $V=4\pi r^{3}/3$ (1) Use of $pV = NkT$ (1) $N = 1.5 \times 10^{22}$ (1)	3
	$\frac{E \times ample \text{ of calculation}}{V = \frac{4\pi r^3}{3} = \frac{4\pi (\frac{0.225 \text{ m}}{2})^3}{3} = 5.96 \times 10^{-3} \text{ m}^3}$ $N = \frac{pV}{kT} \therefore \Delta N = \frac{V(p_2 - p_1)}{kT}$	
	$\Delta N = \frac{5.96 \times 10^{-3} \text{m}^3 (1.76 \times 10^5 - 1.65 \times 10^5) \text{ Pa}}{1.38 \times 10^{-23} \text{J K}^{-1} \times 513 \text{ K}}$ $\Delta N = 1.52 \times 10^{22}$	
	Total for question 14	6

Question	Answer	Mark
Number		
15(a)	Force (or acceleration):	
	• (directly) proportional to displacement (1)	
	• always acting towards the equilibrium position (1)	2
15(b)	Use of $\omega = 2\pi f \text{ OR } \omega = 2\pi/T$ (1)	
	Use of $v = A\omega \sin \omega t$ OR $v = A\omega$ (1)	
	$v = 0.35 \text{ m s}^{-1}$ (1)	3
	[If 5 cm or 10 cm is substituted instead of 2.5 cm then still award	
	second mark]	
	Example of calculation	
	(10) (10) (440 1 -1	
	$\omega = 2\pi \operatorname{rad} \times \left(\frac{1.5 \mathrm{s}}{4.5 \mathrm{s}}\right) = 14.0 \mathrm{rad} \mathrm{s}^{-1}$	
	$v = 2.5 \times 10^{-2} \text{m} \times 14.0 \text{ s}^{-1} = 0.35 \text{ m} \text{ s}^{-1}$	
15(c)	Any THREE from	
	• Node at fixed end or antinode at free end (1)	
	• Distance from node to antinode = $\lambda/4$ (1)	
	• As (vibrating) length increases, wavelength increases (1)	
	• Reference to $y - f \lambda$ (1)	
	• The shorter the ruler the higher the frequency (1)	
	• The shorter the fuller the higher the frequency	
		Max 3
	Total for question 15	8

Question	Answer	Mark
16(a)(i)	Use of $\lambda = \ln 2/t_{1/2}$ (1)	
	Use of $dN/dt = -\lambda N$ (1)	
	$dN/dt = 7.6 \times 10^{13}$ (Bq) (no ue) (1)	3
	Example of calculation	
	$\lambda = \frac{\ln 2}{$	
	$138 \times 24 \times 60 \times 60 \text{ s}$	
	$\frac{dN}{dt} = -\lambda N = -5.81 \times 10^{-8} \text{ s}^{-1} \times 1.3 \times 10^{21} = 7.55 \times 10^{13} \text{ s}^{-1}$	
16(a)(ii)	Conversion from MeV to J (1)	
	Use of $P = \Delta W / \Delta t$ (1)	
	P = 64 (W) (no ue) (1)	3
	<u>Example of calculation</u> $P = 7.55 \times 10^{13} e^{-1} \times 5.2 \times 1.6 \times 10^{-13} = 64 \text{ W}$	
	$P = 7.55 \times 10^{\circ} \text{ s}^{\circ} \times 5.5 \times 1.0 \times 10^{\circ} = 64^{\circ} \text{ w}$	
16(b)(i)	5% factor seen (1)	
	Use of $P = 4\pi r^2 \sigma T^4$ (1)	
	T = 970 K (1)	3
	Example of calculation	
	2.214	
	$T = \frac{4}{4} \frac{3.2 \text{ W}}{4 (2.25 + 4.0^{-3} -)^2 + 5.67 + 4.0^{-8} \text{ W}} = \frac{-2W-4}{4}$	
	$\sqrt{4\pi(2.25 \times 10^{-5} \text{ m})^2 \times 5.67 \times 10^{-5} \text{ Wm}^{-2} \text{K}^{-5}}$	
	T = 971 K	
16(b)(ii)	Use of $\lambda_{mm}T = 2.898 \times 10^{-3}$ (1)	
	$\lambda_{max} = 3.0 \times 10^{-6} \mathrm{m} \tag{1}$	2
	Example of calculation	
	2.898×10 ⁻³ m K	
	$A_{max} = \frac{1}{971 \text{ K}} = 3.0 \times 10^{-1} \text{ m}$	
14(b)(iii)	Infrarad (1)	1
		'
16(c)	Alphas are highly ionising (1)	
	(therefore) will not penetrate the skin (and enter the body) (1)	
	Total for question 16	2
		14

Question	Answer	Mark
Number	27	
17(a)(i)	Use of $m = 1.67 \ge 10^{-27} \text{ kg}$ (1)	
	Use of $\frac{1}{2} m < c^2 > = 3/2 \text{ kT}$ (1)	
	$c_{rms} = 2,800 (\text{ m s}^{-1})$ (no ue) (1)	3
	Example of calculation	
	3kT 3 ×1.38 ×10 ⁻²³ 1K ⁻¹ ×310 K	
	$\langle c^2 \rangle = \frac{10007}{10007} = 7.66 \times 10^6 \text{ m}^2 \text{ s}^2$	
	$m = 1.0007 \times 1.00 \times 10^{-1} \text{ kg}$	
	$= (.05 \times 10^{5} \text{ m}^{2} \text{ s}^{2})$	
	$c_{\rm rms} = \sqrt{7.66 \times 10^6 {\rm m}^2 {\rm s}^{-2}} = 2.77 \times 10^3 {\rm m} {\rm s}^{-1}$	
17(a)(ii)		
	235_{11} , 1 236_{11} , 138_{12} , 96_{12} , 9_{12} , 1	
	1^{2} 3^{2} 0^{2} $+$ $n \rightarrow 2^{2}$ 3^{2} 0^{2} $\rightarrow 2^{2}$ $cs + 3^{2}$ $Rb + 2 \times n$	
	Nucleon proton numbers correct [236, 55] (1)	
	Number of neutrons correct [2] (1)	2
	Number of neutrons correct [2]	
17(a)(iii)	Attempt at calculation of mass defect (1)	
	Use of $\Delta E = c^2 \Delta m \text{ OR}$ use of 1 u = 931.5 MeV (1)	
	$\begin{array}{c} c \ b c \ c \ d \ d \ d \ c \ d \ d$	
	Use of fission rate = $\frac{power output}{1}$ (1)	1
	energy per fission (1)	-
	Fission rate = $8.8 \times 10^{19} \text{s}^{-1}$	
	(1)	
	Example of calculation	
	$A_{m} = (2350432 \ 137 \ 0110 \ 050343 \ 10097) \cdots$	
	$\Delta m = (25557571577710 + 757545 + 10007) u$ $\Delta m = 0.1800 \times 1.66 \times 10^{-27} k_{\rm F} = 3.15 \times 10^{-28} k_{\rm F}$	
	$1 = (1 + 1)^2$ $1 = (1 + 1)^2$	
	$\Delta E = (3 \times 10^8 \mathrm{m s^{-1}}) \times 3.15 \times 10^{-28} \mathrm{kg} = 2.84 \times 10^{-11} \mathrm{J}$	
	$2.5 \times 10^9 \text{ W}$ = 8.8 × 10 ¹⁹ s ⁻¹	
	$\frac{1}{2.84 \times 10^{-11}} = 0.0 \times 10^{-15} = 0.0 \times 10^{-15}$	
	· · · · · · · · · · · · · · · · · · ·	

*17(b)(i)	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)		
	 Max THREE from first 5 marking points Very high temperatures (>10⁷ K)needed To overcome electrostatic repulsion / forces <u>Nuclei</u> come close enough to fuse / for strong (nuclear) force to act Very high densities needed (Together with high nuclei speeds) this gives a sufficient collision rate 	 (1) (1) (1) (1) 	
	 (Very high) temperatures lead to confinement problems Contact with container causes temperature to fall (and fusion to cease) 	(1) (1)	Max 4
17(b)(ii)	${}^{2}_{1}D + {}^{2}_{1}D \rightarrow {}^{3}_{1}H + {}^{1}_{1}X$ X is a proton [accept hydrogen nucleus]	(1)	1
17(b)(iii)	 Any TWO from (Hydrogen) fuel for fusion is (virtually) unlimited whereas fission relies upon (uranium) a relatively limited resource Fusion results in few radioactive products, but radioactive products produced in fission present significant disposal problems 	(1)	
	 For a given mass of fuel, the energy released by fusion is greater than the energy released by fission Total for question 17 	(1)	Max 2 15

Question	Answer	Mark
Number		
18(a)(i)	Gravitation OR gravity OR gravitational attraction / pull / force (1)	1
18(a)(ii)	Use of $F=Gm_1m_2/r^2$ (1)	
	$F = 4.2 \times 10^{33} $ (N) (no u.e.) (1)	2
	Example of calculation	
	$F = \frac{Gm_1m_2}{2}$	
	r^2	
	$F = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^2 (1.6 \times 10^{-37} \text{ kg})(4.0 \times 10^{-37} \text{ kg})}{10^{-37} \text{ kg}^2}$	
	$(3.2 \times 10^{15} \mathrm{m})^2$	
	$F = 4.17 \times 10^{35} \text{ N}$	
18(a)(iii)	Use of $F = m\omega^2 r$ or $F = mv^2/r$ (1)	
	Use of $T=2\pi/\omega$ or $T=2\pi r/\nu$ (1)	
	T = 108 (years) [accept 107 – 111 years] (no ue) (1)	3
	[If r^3 appears in solution, max 1 mark out of 3.	
	If $\omega = \sqrt{\frac{G(M+m)}{(R+r)^3}}$ used, then full credit may be given. This	
	method leads to $T = 109$ years]	
	Example of calculation	
	$\omega = \frac{4.2 \times 10^{30} \text{ N}}{10^{30} \text{ N}}$	
	$\sqrt{(1.6 \times 10^{29} \text{ kg}) \times 7.7 \times 10^{18} \text{ m}}$	
	$\omega = 1.85 \times 10^{-9} \text{ rad s}^{-1}$	
	$T = \frac{2\pi \text{rad}}{1.85 \times 10^{-9} \text{rad s}^{-1}} = 3.40 \times 10^9 \text{s}$	
	$T = \frac{3.40 \times 10^9 \text{ s}}{365 \times 24 \times 60 \times 60 \text{ s year}^{-1}} = 108 \text{ years}$	

*18(b)(i)	(QWC- Work must be clear and organised in a logical manner using		
	technical wording where appropriate.)		
	Radiation (is received) with a longer/stretched wavelength		
	(compared to that emitted) OR lower/smaller frequency	(1)	
	This indicates that distant galaxies are receding / distance between		3
	galaxies is increasing/galaxies are moving apart	(1)	
	(Hence) the universe is expanding / provides evidence for Big Bang	(1)	
18(b)(ii)	The rotational motion (of the black holes) is small compared with that due to the overall recession	(1)	
	(So) both black holes are still moving away OR (hence) the overall effect when the black hole is approaching is to cause a small		
	reduction in the observed red (rather than a blue) shift	(1)	2
	ALTERNATIVE APPROACH:		
	Reference to plane of orbit being perpendicular to line of sight		
	from the Earth	(1)	
	holes	(1)	
18(b)(iii)	Use of $z = v/c$	(1)	
	Use of $v = H_0 d$ $d = 7.1 \times 10^{25} \text{ m}$	(1)	3
		(1)	
	Example of calculation		
	$v=Zc=0.38 \times 3 \times 10^8 \text{ m s}^{-1}=1.14 \times 10^8 \text{ m s}^{-1}$		
	$d = \frac{1.14 \times 10^{\circ} \text{m} \text{s}^{-1}}{1.6 \times 10^{-18} \text{s}^{-1}} = 7.13 \times 10^{25} \text{ m}$		
	Total for question 18		14

Mark Scheme (Results) January 2012

GCE Physics (6PH05) Paper 01 Physics from Creation to Collapse

ALWAYS LEARNING

Question Number	Answer	Mark
1	С	1
2	С	1
3	Α	1
4	В	1
5	С	1
6	В	1
7	В	1
8	В	1
9	Α	1
10	Α	1

Question	Answer	Mark
Number		
11	See $g = \frac{GM}{r^2}$ (1)	
	Correct substitution into $g = \frac{GM}{r^2}$ (1)	
	$r_{\rm E}/r_{\rm m} = 3.7$ (1)	3
	(Correct inverse ratio i.e. $r_{\rm m}/r_{\rm E} = 0.27$, scores full marks)	
	Example of calculation $g_{\rm E} = \frac{GM_{\rm E}}{r_{\rm E}^2} g_{\rm m} = \frac{GM_{\rm m}}{r_{\rm m}^2}$ $GM_{\rm E}$	
	$\therefore \frac{g_{\rm E}}{g_{\rm m}} = \frac{/r_{\rm E}^2}{GM_{\rm m}/r_{\rm m}^2} = \frac{M_{\rm E}}{M_{\rm m}} \times \frac{r_{\rm m}^2}{r_{\rm E}^2}$	
	$\therefore 6 = 81 \times \frac{m}{r_{\rm E}^2}$	
	$\therefore \frac{r_{\rm E}}{r_{\rm m}} = \sqrt{\frac{81}{6}} = 3.67 \approx 3.7$	
	Total for question 11	3

Question	Answer	Mark
12(a)	Use of $P = 4\pi r^2 \sigma T^4$ (1)	
	Power = $2.3 \times 10^{17} \mathrm{W}$ (1)	2
	[Temperature in °C or incorrect conversion to Kelvin can score 1 st mark]	
	Example of calculation	
	$P = 4\pi (6.4 \times 10^6 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (298 \text{ K})^4$	
	$\therefore P = 2.3 \times 10^{17} \text{ W}$	
12 (b)	$x_1 = x_1 + x_2 + x_2 + x_3 + x_4 $	
12 (0)	Use of $\lambda_{\text{max}} T = 2.898 \times 10^{-9}$ (1)	2
	$\lambda_{\rm max} = 9.7 \times 10^{-6} {\rm m}$	
	[Temperature in °C or incorrect conversion to Kelvin can score 1 st mark]	
	Example of calculation	
	$\lambda_{\rm max} = \frac{2.898 \times 10^{-3} \mathrm{mK}}{298 \mathrm{K}} = 9.7 \times 10^{-6} \mathrm{m}$	
12 (c)	Infra-red (radiation/light/wave)	1
	Total for question 12	5

	Total for question 13		9
13(b)(iii)	Graph with correct shape [minus sine curve, at least 30 hours] Same time period as graph given, constant amplitude	(1) (1)	2
	Rate of change of depth = $\frac{(6.5-1.0)}{(11.0-1.5)} = 0.57$		
	Rate of change of depth in range $(0.54 - 0.66)$ m hr ⁻¹ Rate of change of depth in range $(0.57 - 0.63)$ m hr ⁻¹	(1) (1)	3
	Or Attempt to calculate gradient with a max $\Delta t = 12$ hours, and max $\Delta x = 6$ m	(1)	
	$v_{\rm max} = 0.262 \rm rad hr^{-1} \times 2.3 m = 0.602 m hr^{-1}$		
	$\omega = \frac{T}{T} = \frac{1}{24 \text{ hr}} = 0.262 \text{ rad hr}^2$		
	Example of calculation: 2π 2π rad 0.262 H^{-1}		
	$v_{max} = 0.60 \text{ m hr}^{-1}$	(1)	
	Use of $v = (-)A\omega\sin\omega t$ [$v_{\text{max}} = \omega A$]	(1)	
13(b)(ii)	Use of $\omega = \frac{2\pi}{\pi}$	(1)	
	Example of calculation Amplitude = $(6.1 \text{ m} - 1.5 \text{ m})/2 = 2.3 \text{ m}$ Period = $(48 \text{ hr} - 0 \text{ hr})/2 = 24 \text{ hr}$		
	[24 hours = 86 400 s]		
13(b)(i)	Amplitude = 2.3 m [allow $\pm 0.1 \text{ m}$]Time period = 24 hours [allow $\pm 0.5 \text{ hour}$]	(1) (1)	2
	[An equation with symbols defined correctly is a valid response for both marks. e.g $a \propto -x$ or $F \propto -x$]		
	position]		
	[accept towards undisplaced point/fixed point/central point for equilibrium	. /	2
	 (always) acting towards the equilibrium position Or idea that force is a restoring force e.g. "in the opposite direction" 	(1)	
	Force is:	(1)	
	Or		
	[accept undisplaced point/fixed point/central point for equilibrium position]		
	• (always) acting towards the equilibrium position Or idea that acceleration is in the opposite direction to displacement	(1)	
13(a)	 Acceleration is: (directly) proportional to displacement from equilibrium position 	(1)	
Number			WHATK
Question	Answer		Mark

Question	Answer	Mark
Number		
*14	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate (1) Max 5 • Reference to resonance (1) • The sounding box is forced to vibrate (at the frequency of the tuning fork) (1) • Tuning fork and sounding box have similar natural frequencies (1) • Energy transferred from the tuning fork to the box (1) • The sounding box sets a large amount/mass/volume of air into vibration (1) • CHence) the sound (wave) produced (in the air) has a larger amplitude (1) • Larger rate of transfer of energy (to the air) means that the vibration persists for a shorter time (1)	5
	Total for question 14	5

Question	Answer	Mark
Number		
15(a)	Use of $\Delta E = mc\Delta\theta$ (1)	
	Energy transferred = 2.8×10^6 J (1)	2
	Example of calculation	
	$\Delta \theta = (60 - 15) = 45 \text{°C}$	
	$E = mcA\theta - 15kg \times 4200 \text{ J}kg^{-1} \text{ K}^{-1} \times 45\text{ K} - 2.84 \times 10^6 \text{ J}$	
	$L = mc\Delta v = 15 \text{ kg} \times 42003 \text{ kg} \text{ K} \times 45 \text{ K} = 2.04 \times 10^{-3} \text{ J}$	
15 (b)(i)	AW (1)	
13 (0)(1)	Use of $P = \frac{\Delta W}{\Delta W}$	
	Δt	
	(1)	2
	Time = 1100 s	_
	(Allow answers that use AW in range $2.5 \text{ ML} \rightarrow 2.4 \text{ ML}$	
	(Allow alloweds that use ΔW in range 2.5 MJ \rightarrow 5.4 MJ.	
	t = 12008 fr Sivis used and 10008 to 1500 8 for anowed range,	
	Example of calculation	
	$\Delta W = 2.84 \times 10^6 \text{J}$	
	$\Delta t = \frac{\Delta t}{D} = \frac{210 + 100 \text{ c}}{2500 \text{ W}} = 1136 \text{ s} \approx 1100 \text{ s}$	
	P 2500 W	
15 (b)(ii)	Idea that all energy supplied results in a rise in temperature (1)	1
	[e.g. only water heated up Or no energy transferred to surroundings etc]	
15(c)	Use of $P = IV$	
	Current = 11A (1)	2
	(1)	
	Example of calculation	
	$I = \frac{P}{P} = \frac{2500 \text{ W}}{10.9 \text{ A}} = 10.9 \text{ A}$	
	V = V = 230 V	
	Total for question 15	7

Question	Answer		Mark
Number			
16(a)	The weight of the moon Or the gravitational force of the Earth (on the moon)	(1)	
	The (mass of the Earth and) speed/velocity of the moon	(1)	
			2
16(b)	A centripetal / unbalanced force is needed (because the water is moving in a		
	circular path)	(1)	
	Max 2		
	At the highest point the (unbalanced) force is weight of water plus reaction from	(1)	
	bucket	(-)	
	Idea that the minimum force needed (towards the centre of the circle) is the	(1)	
	weight of the water		
	mv^2 .		
	Minimum velocity where $\frac{mmm}{mm} = mg$ Or $v_{min}^2 = rg$	(1)	Max 3
	r	-	
	[Credit may be given for a diagram with appropriate annotations]		
	Total for question 16		5

Question Number	Answer	Mark	
17(a)	Use of $\omega = \sqrt{\frac{k}{m}}$ and $T = \frac{2\pi}{\omega}$ OR use of $T = 2\pi \sqrt{\frac{m}{k}}$ (1)		
	Time period = 0.43 s [allow any value that rounds to 0.4 s] (1)	2	
	Example of calculation		
	$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{120 \mathrm{N}\mathrm{m}^{-1}}{0.55 \mathrm{kg}}} = 14.8 \mathrm{rad}\mathrm{s}^{-1}$		
	$T = \frac{2\pi \mathrm{rad}}{14.8 \mathrm{rad} \mathrm{s}^{-1}} = 0.425 \mathrm{s}$		
17(b) (i)	Energy of the system is dissipated or energy is removed from the system (1) (by frictional forces)		
	(Hence) the amplitude reduces (1)	2	
17(b) (ii)	Sinusoidal graph with at least 2 cycles(1)Decreasing amplitude(1)		
	Approximately constant time period (1)	3	
	Total for question 17	7	
Question Number	Answer		Mark
--------------------	--	-----	------
18 (a)	A radioactive isotope has an unstable nucleus	(1)	
	(Which decays and) emits radiation Or $\alpha/\beta/\gamma$ (radiation) specified	(1)	2
18 (b)	Max 2		
	We can't know when an individual nucleus will decay We can't know which nucleus will decay next	(1)	
	we can t know which hadreds will decay next	(1)	
	(In a given time interval) each nucleus has a fixed probability of decay		
	(In a given time interval) a fixed fraction of nuclei undergo decay	(1)	2
	[accept atom for nucleus, but there is a one mark penalty for using particle, molecule or isotope]		
18 (c)	Identify half life = 5730 years	(1)	
	Use of $\lambda = \frac{\ln 2}{2}$	(1)	
	$t_{1/2}$	(1)	
	Decay constant = $1.21 \times 10^{\circ}$ (yr) [$3.84 \times 10^{\circ}$ (s)]	(1)	
	<i>N</i> / <i>N</i> ₀ =0.60	(1)	
	Use of $N = N_0 e^{-\lambda t}$	(1)	
	Age = $4220 \text{ yr} [1.34 \times 10^{11} \text{ s}]$	(1)	6
	Example of calculation		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{5730} = 1.21 \times 10^{-4} \mathrm{yr}^{-1}$		
	$\frac{N}{N_0} = 0.6 = e^{-1.21 \times 10^{-4} t}$		
	$\therefore \ln(0.6) = -1.21 \times 10^{-4} t$		
	$\therefore t = \frac{\ln(0.6)}{-1.21 \times 10^{-4}} = 4220 \text{ yr}$		
18(d)	Ratio of C-14 to C-12 (in living material) was greater in the past	(1)	
	Appreciation that we are not comparing 'like with like' e.g. ratio used is from current matter	(1)	
	(Hence) the age of Stonehenge has been underestimated	(1)	3
	Total for question 18		13

Question	Answer	Mark
Number	OWC Work must be clear and organized in a logical manner using technical	
· 19 (a)	wording where appropriate	
	horang more appropriate	
	Process of fusion: Max 2	
	In nuclear fusion small <u>nuclei</u> fuse / join together to produce a larger <u>nucleus</u> (1)	
	Mass of the fused nucleus $<$ total mass of initial nuclei (1)	
	(Energy is released as) $\Delta E = c^2 \Delta m$ (1)	
	OF B.E./nucleon increases (so energy is released)	
	Conditions: Max 3	
	A very high temperature (1)	
	To overcome the (electrostatic) repulsion between <u>nuclei</u> (1)	
	A (very) high pressure/density (1)	
	To maintain a high/sufficient collision rate (1)	
	Difficult to replicate: Max 2	
	(Very high) temperatures lead to confinement problems (1)	
	Contact with container causes temperature to fall (and fusion (1)	
	to cease)	Morré
	Very strong magnetic fields are required (1)	Max 0
19 (b)	Idea that ⁵⁶ Fe is the peak of the graph (1)	
	If nuclei were to be formed with $A > 56$, the B.E./nucleon would decrease (1)	
	This would require a net input of energy (and so does not occur) (1)	3
19 (c)(i)	(A star/astronomical) object of known luminosity (due to some characteristic (1)	1
	property of the star/object)	
19(c)(ii)	Use of $F = \frac{L}{1}$	
	$4\pi d^2$ (1)	
	24	
	$Distance = 9.3 \times 10^{24} m $ (1)	2
	Example of calculation	
	$2.0 \times 10^{36} \text{ W}$ 0.2010 ²⁴ m	
	$a = \sqrt{\frac{4\pi \times 10^{-15} \text{ W m}^{-2}}{4\pi \times 10^{-15} \text{ W m}^{-2}}} = 9.30 \times 10^{-10} \text{ m}$	
19(c)(iii)	The galaxy is receding / moving away from the Earth (1)	1
(_)()	8	
19(c)(iv)	Use of $Z = v/c$ (1)	
	Use of v = Hd (1)	
	$ Hubble constant = 2.1 \times 10^{-5} s^{-1} $ (1)	3
	Example of calculation	
	$v = Zc = 0.064 \times 3 \times 10^8 \text{ m s}^{-1} = 1.92 \times 10^7 \text{ m s}^{-1}$	
	$v = 1.92 \times 10^7 \text{ ms}^{-1}$	
	$H = \frac{1}{d} = \frac{1}{9.30 \times 10^{24}} = 2.06 \times 10^{-10} \text{ s}^{-1}$	
	Total for question 19	16
		10

Summer 2012

GCE Physics (6PH05) Paper 01 Physics from Creation to Collapse

Question	Answer	Mark
Number		
1	D	1
2	В	1
3	D	1
4	В	1
5	С	1
6	Α	1
7	D	1
8	D	1
9	В	1
10	В	1

Question Number	Answer	Mark
11	MAX 3	
	The existence of the microwave background:	
	• Originates from the Big Bang (1)	
	Microwave radiation comes from the universe itself Or it is <u>cosmic background</u> radiation [accept CMB] (1)	
	• Microwave wavelength linked to temperature of universe [e.g. indicates a temperature of space of about 3 K] (1)	
	• Originally the universe was a hotter place than it is now Or temperature decreases as the universe expands (1)	
	• Wavelength has been increased Or frequency decreased. (Do not credit changes due to movement of galaxies) (1)	3
	Total for question 11	3

Question	Answer	Mark
Number		
12(a)	Use of $\Delta E = mc\Delta\theta$ (1)	
	Energy = 780 J (1)	2
	Example of calculation	
	$\Delta E = 34 \times 10^{-3} \text{ kg} \times 490 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times (100 - 53) \text{ K} = 783 \text{ J}$	
12(b)		
	Heat / thermal energy is transferred from the sphere to the wax (1)	
	Idea that the lead sphere has insufficient energy for melting the wax	
	(e.g. The lead sphere transfers less heat / thermal energy (than the steel sphere). (1)	2
	Credit a supporting calculation)	
	Total for question 12	4

Question	Answer		Mark
Number			
13(a)(i)	$16 \mu m [accept \pm 1 \mu m]$ (1)	1
13(a)(ii)	Use of $\lambda_{\rm max} T = 2.898 \times 10^{-3}$ (1)	
	Temperature = 180 K (ecf from (a)(i)) (1)	2
	[161 K for 18 µm, 170 K for 17 µm, 193 K for 15 µm, 207 K for 14 µm]		
	Example of calculation		
	$_{T}$ 2.898×10 ⁻³ mK 1.91K		
	$I = \frac{16 \times 10^{-6} \text{ m}}{16 \times 10^{-6} \text{ m}} = 181 \text{ K}$		
13(b)	Mass of the Sun (1)	
	G Or gravitational constant Or 6.67×10^{-11} (N m ² kg ⁻²) (1)	2
	[can be next to either answer prompt]		
13(c)	Use of $g = \frac{GM}{2}$ (1)	
	r^{-2} Field strength = 5.6 × 10 ⁻⁶ N kg ⁻¹ [accept m s ⁻²] (1)	2
	Example of calculation		
	$g = \frac{6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \times 1.9 \times 10^{27} \text{ kg}}{5.63 \times 10^{-6} \text{ Nkg}^{-1}}$		
	$(1.5 \times 10^{11} \text{ m})^2$		
	Total for question 13		7

Question	Answer		Mark
Number			
14(a)	Use of $pV = NkT$	(1)	
	Number of molecules = 2.2×10^{23}	(1)	2
	(Use of the number of molecules to get a pressure of 0.99×10^5 Pa can score both		
	marks. Allow use of $pV = nRT$ leading to correct answer for 2 marks, but no		
	credit for a substitution of incorrect values into this equation)		
	Example of calculation		
	$\frac{1}{1.1 \times 10^5} \text{ Pa} \times 8.2 \times 10^{-3} \text{ m}^3 \qquad 22$		
	$N = \frac{112000 \text{ J}^{-23} \text{ J}^{-23} \text{ J}^{-23} \text{ I}^{-1} \text{ w}^{-2} \text{ m}^{-2}}{1.28 \times 10^{-23} \text{ J}^{-1} \text{ w}^{-1} \text{ w}^{-2} \text{ m}^{-2}} = 2.2 \times 10^{-23}$		
	1.38×10 JK ×293K		
14(b)	QWC – Work must be clear and organised in a logical manner using technical		
	Wording where appropriate (For this question account angular in terms of atoms, malacular or norticles)		
	(For this question accept answers in terms of atoms, molecules or particles)		
	• Internal energy is (sum of) molecular kinetic and potential energies	(1)	
	• In (an ideal) gas the molecules have only kinetic energy Or the molecules		
	do not have potential energy.	(1)	
	• $E_{\rm b} = 3kT/2$ Or $E_{\rm b} \propto T$ Or (above 0 K) the air molecules are in (continual)		
	random motion	(1)	
	• If the gas reached absolute zero, then the K.E. of the molecules would be		
	zero and so the statement is correct		
	Or It air is identified as not being ideal, then allow idea that molecules	(1)	
	would still have potential energy at 0 K, and so statement is incorrect	(1)	4
			-
	Total for question 14		6

Question	Answer		Mark
Number	Mar 2		
15(a)	 Angles are measured using the fixed background of more distant stars 	(1)	
	• Find angular displacement of the star (as Earth moves around the Sun) over a 6 month period / over a diameter of the Earth's orbit	(1)	
	• Diameter of the Earth's orbit about the Sun must be measured/known	(1)	2
	[Full marks can be obtained from an annotated diagram] nearby star The stars Find olivelant stars		
15(b)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriateIdea that red shift is the (fractional) increase in wavelength of light received (due to) recession of the source from the Earth/observerDoppler/red shift is used to find v (allow reference to use of red shift equation e.g. $v = zc$)Appropriate reference to Hubble's LawOr $v = H_0d$	(1) (1) (1) (1)	4
	[for 1 st marking point allow "decrease in frequency" for "increase in wavelength"]		-
	Total for question 15		6

Question Number	Answer		Mark
16(a)(i)	A = Red Giants Or Giants B = Main Sequence C = White Dwarfs Or Dwarfs	(1) (1) (1)	3
16(a)(ii)	$S \rightarrow A \text{ correctly marked (straight line or curve starting at S going near A)}$ A $\rightarrow C$ correctly marked (some upward curving from near A, near to C but can go beyond C)	(1) (1)	2
16(b)	We determine the star's temperature T (from Wien's law)	(1)	
	- temperature / (nom when shaw)	(1)	
	• luminosity <i>L</i> (from the H-R diagram)	(1)	
	• (Then) r is calculated using (Stefan's Law) $L=4\pi r^2 \sigma T^4$ Or $L=A\sigma T^4$ [accept a re-arranged equation for A Or r]	(1)	3
	Total for question 16		8

Question	Answer		Mark
Number			
17(a)(i)	Resonance	(1)	1
17(a)(ii)	The vibrations from the engine/road surface/wheels must drive/force the tiger's		
	head (to vibrate)	(1)	
	at a frequency equal/close to its natural frequency	(1)	
	Or		
	Driver/forcing frequency	(1)	
	Matches natural frequency	(1)	2
17(b)(i)	2π	(1)	
	Use of $\omega = \frac{T}{T}$		
	Use of $a_{max} = \omega^2 A$	(1)	
	Amplitude = 2×10^{-2} m	(1)	3
	Example of calculation		
	$\frac{2\pi}{2\pi}$		
	$\omega = \frac{2\pi}{0.8 c} = 7.85 (rad) s^{-1}$		
	$12 m s^{-2}$		
	$A = \frac{1.2}{(7.05 - 1)^2} = 1.95 \times 10^{-2} m$		
17(b)(ii)	V.03 3 - J- Correct shape and phase (in antiphase with acceleration) for graph	(1)	
1/(0)(11)	Correct shape and phase (in antiphase with acceleration) for graph	(1)	
	Amplitude (ecf from (b)(i)) and a time marked on axes	(1)	2
		(1)	4
	Total for question 17		8

Question Number	Answer		Mark			
18(a)	Max 4 with at least ONE similarity and ONE difference					
	 Radioactive decay and corn popping are both random events Or the time at which any given nucleus will decay and any kernel will pop cannot 					
	be predicted Or can't tell which nucleus will decay nor which kernel will pop next	(1)				
	• (With a large number) the rate of decay / popping for both depends upon the number of unchanged nuclei / kernels	(1)				
	Both have a decreasing rate of decay (1)					
	• The rate of decay / popping depends upon the type of nucleus					
	(isotope) / size of kernel	(1)				
	• Radioactive decay is an irreversible change, as is corn popping	(1)				
	Differences:					
	• Not all the kernels are identical, whereas (for a given isotope) all the nuclei are identical					
	 Popping of corn depends on external factors and radioactive decay does not 	(1)				
	(examples such as heating acceptable)	(1)				
	• The kernels do not emit standard fragments when they decay whereas radioactive nuclei emit radiation.	(1)	4			
18(b)(i)	Log graph drawn	(1)				
	Suitable scales [not starting from 0 on y-axis]	(1)				
	Correct plotting of 6 points	(1)				
	Valid attempt at gradient calculation (1)					
	Use of $t_{1/2} = \ln 2/\text{gradient}$	(1)				
	$t_{1/2} = 82 \pm 3 s$ (1)					
	Example of Calculation					
	$ \begin{array}{c} 4.8 \\ 4.6 \\ 4.4 \\ 4.2 \\ 3.4 \\ 3.6 \\ \end{array} $					
	3.4					
	3.0 0 30 60 90 120 150					
	Time/s					

Question	Answer				Mark		
Number							
19(a)	Similarity : Same numbe have 1 proton	r of protons Or sam	he magnitude of charge Or both	(1)			
	Difference: Different nu	mber of neutrons / r	nucleons Or different mass Or D				
	has 1 neutrons and T has	2 neutrons		(1)	2		
19(b)	ΔE			(1)			
	Use of $P = \frac{1}{\Delta t}$ (do not	ot penalise a power	of ten error)				
	Energy = $7.5 \times 10^6 (J)$ (1)						
	Example of calculation						
	$E = 500 \times 10^{12} \text{ W} \times 15 \times 10^{12} \text{ W}$	$\times 10^{-9} \mathrm{s} = 7.5 \times 10^{6}$	J				
19(c)(i)	$^{2}_{1}\text{D} + ^{3}_{1}\text{T} \rightarrow ^{4}_{2}\text{He}$	$+ {}^{1}_{0}n$					
	Top line 2	3 4 1		(1)			
	Bottom line 1	$\frac{3}{1}$ $\frac{4}{2}$ $\frac{1}{0}$		(1)	2		
19(c)(ii)	Attempt at calculation of mass difference(1)Energy released = 17.5 (MeV) $[17.5$ must be clearly identified as an energy!(1)						
	Energy released = 17.5 (se clearly identified as an energy]	(1)			
	Example of calculation						
	$\Delta m = (1875.6 + 2808.9 - 3727.4 - 939.6) \text{ MeV/c}^2 = 17.5 \text{ MeV/c}^2$						
	$\Delta E = 17.5 \text{ MeV}$						
19(c)(iii)	Conversion of energy to	consistent units		(1)			
	Number of nuclei = 3×1	10 ¹⁸		(1)	2		
	Example of calculation						
	In each fusion $\Delta E = 17$.	$5 \times 10^6 \text{ eV} \times 1.6 \times 10^6 \text{ eV}$	$0^{-19} \operatorname{JeV}^{-1} = 2.8 \times 10^{-12} \operatorname{J}$				
	$\therefore N = \frac{7.5 \times 10^6 \text{ J}}{2.8 \times 10^{-12} \text{ J}} = 2.68 \times 10^{18}$						
	Energy M.J (b) En	ergy MeV (c)(ii)	$N \times 10^{18}$				
	7.5	17.5	2.7				
	7.5	20	2.3				
	8	17.5	2.9				
	8	20	2.5				

19(c)(iv)	Application of momentum conservation	(1)	
	Deduction that $V_{\rm N} = 4 V_{\alpha}$ [$v_{\rm N} = 3.967 v_{\alpha}$]	(1)	
	$E_{K} = \frac{1}{2}mv^{2} \qquad (17.5)$	(1)	
	Use of -2 (ratio as shown or sum = 1/.5 MeV)	(1)	
	Energy = 14 MeV (ecf (c)(ii), 14.1 MeV, if $v_N = 3.967 v_{\alpha}$ 16 MeV if 20 MeV	(1)	
	used)		
	Or		
	Application of momentum conservation	(1)	
	Use of $E_k = p^2/2m$	(1)	
	Deduction that $E_N = 4 E_{\alpha}$	(1)	4
	Energy = 14 MeV	(1)	4
	Example of calculation (1 st method)		
	$m_N V_N = m_\alpha V_\alpha$		
	$V_{\rm N} = \frac{m_{\alpha}}{m_{\rm N}} \times V_{\alpha} = 4V_{\alpha}$		
	$E = \frac{1}{2} m_N V_1^2 = 4 - 4 - 2$		
	$\frac{L_{\rm N}}{E} = \frac{2}{1} \frac{1}{1} \frac{1}{E} \times \left(\frac{4}{1}\right) = 4$		
	$\frac{2\alpha}{2}m_{\alpha}V_{\alpha}^{2}$		
	$\therefore E_{\rm N} = \frac{4}{\pi} \times 17.5 \mathrm{MeV} = 14 \mathrm{MeV}$		
	- · · ·		
	Example of calculation (2^{nd} method)		
	$p_{\alpha} = p_{\mathrm{N}}$		
	$p_{\alpha}^2 = p_{\mathrm{N}}^2$		
	$E_{a} \times 2m_{a} = E_{N} \times 2m_{N}$		
	$m_{\rm N} = E_{\rm N}$		
	$\therefore E_{\alpha} = E_{N} \times \frac{N}{m_{\alpha}} = \frac{N}{4}$		
	Also, $E_{\alpha} + E_{N} = 17.5 \text{ MeV}$		
	$E_{\rm N}$ + E = 17.5 MeV		
	$\frac{1}{4} + E_{\rm N} = 17.5 {\rm MeV}$		
	$E = -\frac{4}{175} \times 175 \text{ MeV} = 14 \text{ MeV}$		
	$\frac{1}{5}$		
19(d)	Max 3		
	A neavy nucleus absorbs a neutron. [accepts "collides with" / "fired into" for "absorbs"]	(1)	
	The nucleus becomes unstable and splits into two (roughly equal sized)	(1)	
	fragments [accept "decays" / "breaks up" for "splits"]	(1)	
	Idea that a few neutrons are also emitted in the fission process	(1)	
	These neutrons cause further fissions Or these neutrons cause a chain reaction	(1)	3
	(if atom is used instead of nucleus only penalise once)		
	Total for question 19		17

January 2013

GCE Physics (6PH05) Paper 01

Physics From Creation To Collapse

Question	Answer	Mark
Number		
1	В	1
2	В	1
3	В	1
4	В	1
5	С	1
6	A	1
7	A	1
8	D	1
9	С	1
10	С	1

Question	Answer		Mark
Number			
11(a)	Pressure (of gas)	(1)	
	Amount of gas		
	Or mass of gas		
	Or number of moles / molecules / atoms	(1)	2
11(b)	Extending/extrapolating the line backwards	(1)	
	The volume occupied by a gas will be zero at a particular temperature	(1)	
	Or		
	The graphs for different gases	(1)	
	All cut the x axis at the same temp	(1)	2
	Total for question 11		4

Question Number	Answer		Mark
12(a)	Use of $\lambda = \ln 2/t_{1/2}$ $\lambda = 1.22 \times 10^{-4} (\text{yr}^{-1})$ $[\lambda = 3.86 \times 10^{-12} (\text{s}^{-1}), \lambda = 2.31 \times 10^{-10} (\text{min}^{-1})]$ Use of $A = A_0 e^{-\lambda t}$ $[\text{if } \lambda = 1.2 \times 10^{-4}, \text{ then } t = 960 (\text{yr})]$ [credit answers that use a constant ratio method to find the number of half lives elapsed] Example of calculation $\lambda = \frac{0.693}{5700 \text{ yr}} = 1.22 \times 10^{-4} \text{ yr}^{-1}$ $14.7 \text{ s}^{-1} = 16.5 \text{ s}^{-1} \times e^{-1.22 \times 10^{-4} \text{ yr}^{-1} \times t}$ $t = \frac{\ln \left(\frac{14.7 \text{ s}^{-1}}{16.5 \text{ s}^{-1}}\right)}{1.22 \times 10^{-4} \text{ s}^{-1}} = 947 \text{ yr}$	(1) (1) (1) (1)	4
12 (b)	Initial value of count rate should be bigger than 16.5 min ⁻¹ Or greater count rate from living wood in the past [e.g. A/A_0 smaller] Or initial value of count rate underestimated in the calculation Or Initial number of undecayed atoms greater [e.g. N/N ₀ smaller] Age of sample has been underestimated Or ship is older than 950 yr Or sample has been decaying for a longer time [If a calculation has been carried out to show that a greater value of initial activity leads to a greater age, then award both marks] Total for question 12	(1)	2
	Total for question 12		6

Question	Answer		Mark
Number			
13	Use of $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$ T = 3400 (K) Use of $L = 4\pi r^2 \sigma T^4$ $r_{\text{B}} = 6.8 \times 10^{11} \text{ (m)} [8.82 \times 10^{11} \text{ m if T} = 3000 \text{ K}, 6.87 \times 10^{11} \text{ m if T} = 3400 \text{ K}]$ $r_{\text{B}}/r_{\text{S}} = 980 \qquad [1270 \text{ if } T = 3000 \text{ K}, 988 \text{ if } T = 3400 \text{ K}]$ <u>Example of calculation</u> $T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$	(1) (1) (1) (1) (1)	5
	$r_{B} = \sqrt{\frac{4.49 \times 10^{31} \text{ W}}{4\pi \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (3410 \text{ K})^{4}}} = 6.83 \times 10^{11} \text{ m}$ $\frac{r_{B}}{r_{S}} = \frac{6.83 \times 10^{11} \text{ m}}{6.95 \times 10^{8} \text{ m}} = 983$		
	Total for question 13		5

Question	Answer		Mark
Number			
14	QWC – Work must be clear and organised in a logical manner using technical wording		
	where appropriate		
	Standard candles are (stellar) objects of known luminosity	(1)	
		(-)	
	Standard candle's brightness on earth is measured/known/found		
	Jacoust apparent magnitude or flux in place of brightness]	(1)	
	[accept apparent magnitude of nux in place of originaless]	(1)	
	[Do not accept used in place of measured]		
	Use inverse square law [F=L/4 π d ²] Or use distance modulus method [M – m = 5log(d/10)]	(1)	
	(Hence) distance to standard candle is calculated	(1)	
	Dust layer will reduce brightness /magnitude/flux of Cepheid	(1)	
	Cepheid will appear to be further away than it is	(1)	6
	[accept "star" for "standard candle" or for "Cepheid" for MP2 to MP6]		
	Total for question 14		6

Question	Answer		Mark
Number $15(a)(i)$	Calculation of average time period [accept average time for 10T]	(1)	
13(a)(1)	1	(1)	
	Use of $f = \frac{1}{T}$		
	f = 1.5 Hz	(1)	3
	Example of calculation		
	$T_{1} = t_{1} + t_{2} + t_{3} = (6.2 + 6.6 + 6.9)s_{-0.657}s_{-0$		
	$I = \frac{1}{30} = \frac{1}{30} = \frac{1}{30} = 0.0578$		
	$f = \frac{1}{-152}$ Hz		
	$f = \frac{1.52 \text{ Hz}}{0.657 \text{ s}} = 1.52 \text{ Hz}$		
15(a)(ii)	Force (or acceleration):		
	proportional to displacement from equilibrium position	(1)	
	always acting towards the equilibrium position Or always in the opposite direction to the	(1)	2
	displacement	(1)	-
	[accept rest/centre point for "equilibrium position"]		
	[both marks can be gained from an equation with terms clearly defined including a correct		
	reference to the negative sign]		
15(b)	There is (large) drag force	(1)	
	[accept air resistance for drag]		
	Producing a deceleration		
	Or the oscillation is (heavily) damped		
	Or energy is transferred/removed from the system [e.g. transferred to the surroundings.]	(1)	2
	[Do not accept "lost" for "transferred"]		
15(c)	Resonance	(1)	
	Driven at a frequency equal/near the natural frequency of the wings	(1)	2
	[accept their answer to (a) as a numerical value]		
	[for "driven" accept "forced/made to oscillate"]		
	Total for question 15		9

Question Number	Answer		Mark
16(a)	Calculate gradient of line Identify gradient with H Or use of $v = Hd$ for a point on the line Use of $t = 1/H$ $t = 4.5 \times 10^{17}$ s (accept answers in range 4.2×10^{17} s to 4.8×10^{17} s)	(1) (1) (1) (1)	
	Alternative method: Pair of d, v values read from the line Values chosen from the upper end of the line Use of t = d/v t = 4.5×10^{17} s [$\pm 0.3 \times 10^{17}$ s] [t = 1.4×10^{10} yr [$\pm 0.1 \times 10^{10}$ yr] Example of calculation $H = \text{gradient} = \frac{(11000 - 0) \times 10^3 \text{ m s}^{-1}}{(50 - 0) \times 10^{23} \text{ m}} = 2.2 \times 10^{-18} \text{ s}^{-1}$ $t = \frac{1}{10} = \frac{1}{2.2 \times 10^{-18} \text{ s}^{-1}} = 4.5 \times 10^{17} \text{ s}$	(1) (1) (1) (1)	4
	$H = 2.2 \times 10^{-10} \mathrm{s}^{-1}$		
16* (b)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Measure wavelength of light (from the galaxy) Compare it to the wavelength for a source on the Earth Reference to spectral line or line spectrum Reference to Doppler effect/shift Or redshift	(1) (1) (1) (1)	
	<i>v</i> is found from:		
	fractional change in wavelength equals ratio of speed of source to speed of light Or see reference to $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$ with terms defined Or see reference to $z = \frac{v}{c}$ with terms defined	(1)	5
	[accept answers in terms of frequency rather than wavelength]		
16*(c)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Max 3 (Due to the) difficulty in making accurate measurements of distances to galaxies	(1)	
	Hubble constant has a large uncertainty Or age = $1/H$ may not be valid as gravity is changing the expansion rate	(1)	
	Because of the existence of dark matter	(1)	
	Values of the (average) density/mass of the universe have a large uncertainty [accept not known]	(1)	
	(Hence) measurements of the critical density of the Universe have a large uncertainty	(1)	
	Dark energy may mean we don't understand gravity as well as we thought we did (so it's hard to predict how gravity will determine the ultimate fate)	(1)	3
	Total for question 16		12

Question Number	Answer		Mark
17(a)	The gravitational field strength [accept "g"] decreases Or the (gravitational) force on the satellite/object/mass decreases It is a centripetal force (and not a centrifugal force) The satellite is accelerating and so is not in balance	(1) (1) (1)	3
17(b)(i)	See $\frac{mv^2}{r} = \frac{GmM_E}{r^2}$ Or $m\omega^2 r = \frac{GMm}{r^2}$	(1)	
	$\therefore v^2 = \frac{GM_E}{r} \qquad \text{Or} \qquad v = \sqrt{\frac{GM_E}{r}}$	(1)	
	GM_E is constant (and so v decreases as r increases)		
	Or $v^2 \propto \frac{1}{r}$ Or $v \propto \frac{1}{\sqrt{r}}$	(1)	3
17(b)(ii)	State $T = \frac{2\pi}{\omega}$ and $\omega = \frac{v}{r}$ Or $T = \frac{s}{v}$ and $s = 2\pi r$	(1)	
	Hence T = $\frac{2\pi r}{v}$ (so smaller v leads to a larger value of T)	(1)	2
	[Accept $T = \frac{2\pi GM_{\rm E}}{v^3}$ for final mark]		
17(c)	Use of $T = \sqrt{\frac{4\pi^2 r^3}{GM}}$	(1)	
	T = 5530 s [92 minutes]	(1)	2
	Example of calculation		
	$T = \sqrt{\frac{4\pi^2 r^3}{GM}} = \sqrt{\frac{4\pi^2 (6360000 \mathrm{m} + 400000 \mathrm{m})^3}{6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2} \times 5.98 \times 10^{24} \mathrm{kg}}} = 5530 \mathrm{s}$		
17(d)	Max 2 As radius decreases:		
	There is a transfer of gravitational potential energy to kinetic energy [Accept kinetic energy increases and gravitational potential energy decreases]	(1)	
	Sum of kinetic and gravitational potential energy decreases Or satellite does work against frictional forces Or transfer of kinetic energy of satellite to thermal energy Or heating occurs	(1)	2
	Total for question 17		12

Question	Answer		Mark
$\frac{\text{Number}}{18 \text{ (a)(i)}}$			
10 (a)(1)	$N + \alpha \rightarrow {}^{17}_{8}O + {}_{1}p$		
	All values correct	(1)	1
18(a)(ii)	In nuclear fission a chain reaction can be set up		
	Or in a chain reaction the (total) energy released can be very large		
	Or a very high reaction rate releases much more energy	(1)	1
18 (b)	Attempt at mass deficit calculation	(1)	
	Use of $\Delta E = c^2 \Delta m$ (Allow use of 1 u = 1.66 x 10 ⁻²⁷ kg)	(1)	
	Use of 1 MeV = 1.6×10^{-15} J (Allow use of $1u = 931.5$ MeV/c ²) $\Delta E = 174$ MeV	(1) (1)	4
	Example of calculation		
	$\Delta m = (390.29989 - 233.99404 - 152.64708 - (2 \times 1.67493)) \times 10^{-27} \text{ kg}$		
	$\Delta m = 3.0891 \times 10^{-28} \mathrm{kg}$		
	$\Delta E = (3.00 \times 10^8 \mathrm{ms^{-1}})^2 \times 3.0891 \times 10^{-28} \mathrm{kg} = 2.780 \times 10^{-11} \mathrm{J}$		
	$AE = 2.780 \times 10^{-11} \text{ J} = 173.8 \text{ MeV}$		
	$\Delta L = \frac{1}{1.60 \times 10^{-13} \mathrm{J}\mathrm{MeV}^{-1}} = 175.8 \mathrm{WeV}^{-1}$		
18 (c)(i)	Same number of protons [do not accept atomic/proton number],	(1)	
	Different numbers of neutrons [do not accept mass/nucleon/neutron number]	(1)	2
18(c)(ii)	Correct calculation for ω [see 6283 or 2000 π or <u>60 000 x 2π</u>]	(1)	
	60	(1)	2
		(-)	-
	Example of calculation		
	$a = -\left(\frac{60000 \times 2\pi}{60 \mathrm{s}}\right)^2 \times 15 \times 10^{-2} \mathrm{m} = 5.92 \times 10^6 \mathrm{m s^{-2}}$		
18(c)(iii)	NIAX 2 Stiff/stiffness	(1)	
	Strong/strength	(1)	
	Low density	(1)	2
18(d)	Use of $\Delta E = mc\Delta\theta$	(1)	
	Rate at which energy is removed = 3.1×10^9 (W)	(1)	
	Use of the efficiency equation [must have $2.2 \times 10^{\circ}$ (W) on top line] Efficiency = 42% [accept 0.42]	(1) (1)	4
	Example of calculation		
	$\Delta E = 70000 \text{ kg} \times 3990 \text{ j kg}^{-1} \text{ K}^{-1} \times 11 \text{ K} = 3.07 \times 10^{9} \text{ J}$		
	% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100 = \frac{2.2 \times 10^{9} \text{ W}}{(2.2 + 3.1) \times 10^{9} \text{ W}} \times 100 = 41.5\%$		
	Total for question 18		16

Summer 2013

GCE Physics (6PH05)

Paper 01: Physics-Creation/Collapse

Question	Answer	Mark
Number		
1	Α	1
2	С	1
3	С	1
4	D	1
5	С	1
6	С	1
7	D	1
8	D	1
9	В	1
10	В	1

Question	Answer	Mark
Number		
11	Galaxies are receding (1)	
	Or galaxies are moving away (from us and from each other)	
	(1)	
	The greater the distance the greater the velocity	
	(1)	3
	The universe is expanding	
	Total for question 11	3

Question	Answer		Mark
12(a)	(B2 =) 2.9×10^{-3} /A2 Or (B2 =) 2.9×10^{-3} / λ_{max} Or (B2=) 2.9×10^{-3} /6.85 ×10 ⁻⁷	(1)	1
	[Ignore incorrect powers of 10]		
12(b)	Use of $L = \sigma T^4 A$ $A = 0.21(48) \times 10^{19} \text{ (m}^2)$	(1) (1)	2
	For max 1 Use of $A = 4\pi R^2$ to give $A = 2.1(1) \times 10^{18} \text{ (m}^2)$		
	Example of calculation: $A = \frac{0.392 \times 10^{26} \text{ W m}^{-2}}{5.67 \times 10^{-8} \text{ W m}^{-4} \text{ K}^{-4} \times (4230 \text{ K})^{4}} = 2.148 \times 10^{18} \text{ m}^{2}$		
12(c)	Flux/brightness/intensity measured and distance to star determined	(1)	
	(Luminosity calculated using) $L = 4\pi d^2 F$	(1)	
	Alternative mark scheme:	(1)	
	remperature and type of star identified [e.g. main sequence]	(1)	

	Hertzsprung-Russell diagram used to find luminosity	(1)	2
	Total for question 12		5
Questio n Number	Answer		Mark
13(a)	Luminosity scale: Log scale [$10^3 \rightarrow 10^6$ (top) and $10^{-3} \rightarrow 10^{-6}$ (bottom)]	(1)	
	Temperature scale: reverse log/power scale [e.g. 12,000 (left) and 3000 (right)]	(1)	2
13(b)(i)	(Fusion of) hydrogen into helium [accept symbols]	(1)	1
13(b)(ii)	Circle around stars top left of main sequence [included in the area indicated below]	(1)	
	$I = \frac{1}{1} \int_{0}^{1} \int_$	 (1) (1) (1) 	3
	[Max 1 mark if no comparative] Both scale marks and correct area identified		
	6000 $7/K$ Neither scale mark and area too low		

	Total for question 13		6
Questio n Numbor	Answer		Mark
14(a)	Con an		
14(a)	See (unbalanced force), $F = \frac{Gm_1m_2}{r^2}$	(1)	
	Apply N2 with $a = v^2/r$		
l	Or Equate F with mv^2/r	(1)	
	Or Equate F with $m\omega^2 r$	(1)	
	Use of $T = 2\pi r/v$ Or $T = 2\pi/\omega$		
	T = 43000 (s)	(1) (1)	
	Or		
	At height of satellite orbit, use $g = GM/r^2$	(1)	
	Use $g = a = \omega^2 r \operatorname{Or} g = a = v^2 / r$	(1)	
	Use of $T = 2\pi r/v$ Or $T = 2\pi/\omega$	(1)	
	T = 43000 (s)	(1)	4
	[First 3 marks can be obtained from use of $T = 2\pi \sqrt{\frac{r^3}{GM}}$] [If reverse show that to calculate h = 18 900 km, then max 3 marks] <u>Example of calculation:</u> $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $v = \sqrt{\frac{GM}{r}}$ r = (20200 + 6400) km = 2.66 × 10 ⁷ m $v = \sqrt{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg}}{2.66 \times 10^7 \text{ m}}} = 3.88 \times 10^3 \text{ m s}^{-1}}$ $T = \frac{2\pi \times 2.66 \times 10^7 \text{ m}}{3.88 \times 10^3 \text{ m s}^{-1}} = 43100 \text{ s}}$		
14(b)	Communications satellites must be in the same position in sky at all times Or communications satellites must be in a geostationary orbit	(1)	
	(So) communications satellites must rotate at the same rate as the Earth Or communications satellites must have same angular velocity as the Earth		
	Or communications satellites must have same period as the Earth		
	Or communications satellites must be in geosynchronous orbits	(1)	2
14(c)	The radius of the GPS satellite orbit is smaller	$\frac{1}{(1)}$	

The orbit of the communications satellite must be in an equatorial plane (1)	2
period]		
Total for question 14		8

Questio	Answer		Mark
n N. I			
Number	(When the air is heated) the density (of air in) the balloon decreases	(1)	
15(a)	(when the air is heated) the density (or air in) the bandon decreases	(1)	
	So the upthrust is greater than the weight of the balloon (plus occupants)	(1)	2
15(b)	Use of $a - \frac{m}{m}$	(1)	
	$V = \frac{1}{V}$	(1)	
	Use of $\Delta E = mc\Delta\theta$ [$\Delta\theta$ must be a temperature difference]	(1)	
	$\Delta E = 1.3(5) \times 10^9 \mathrm{J}$	(1)	3
	Example of calculation:		
	$m = \rho V = 1.20 \text{ kg m}^{-3} \times 7.4 \times 10^4 \text{ m}^3 = 8.88 \times 10^4 \text{ kg}$		
	$\Delta E = mc \Delta \theta = 8.88 \times 10^4 \text{ kg} \times 1010 \text{ Jkg}^{-1} \text{ K}^{-1} (35 - 20) \text{ K} = 1.345 \times 10^9 \text{ J}$		
15(c)(i)	Use of $pV = NkT$ [temperature in either K or °C]	(1)	
	$p = 9.24 \times 10^4 \text{ Pa}$	(1)	2
	Example of calculation:		
	$p_2 = T_2$		
	$\frac{T}{p_1} = \frac{T}{T_1}$		
	(273-5)K (273-5)K		
	$p_2 = (1.01 \times 10^3) \text{Pa} \times \frac{(-7.2 \times 10^{-2})}{(273 + 20) \text{K}} = 9.238 \times 10^4 \text{ Pa}$		
15(c)(ii)	Max 2		
	Hydrogen/gas behaves as an ideal gas	(1)	
	Mass of hydrogen/gas in balloon stays constant [Accept amount of		
	hydrogen/gas]	(1)	
	Or number of molecules/atoms/particles of hydrogen/gas in balloon stays		
	constant	(1)	2
	Temperature of hydrogen/gas is the same as the temperature of the		
	surroundings		
15(c)(iii	(QWC – Work must be clear and organised in a logical manner using		
)	technical wording where appropriate)		
	The average/mean kinetic energy of the molecules decreases	(1)	
	Molecules travel slower (on average) Or rate of collisions with walls is less	(1)	
	So rate of change of momentum (during collisions) with walls is less	(1)	3
	Total for question 15		12

Question Number	Answer		Mark
16(a)(i)	(A standard candle is) an object of known luminosity	(1)	1
16(a)(ii)	Flux/brightness/intensity of standard candle is measured	(1)	
	Inverse square law used (to calculate distance to standard candle)	(1)	2
	[Reference to measurement of apparent magnitude of star, m, and distance calculated using $m - M = 5\log(d/10 \text{ pc})$ can score 2 marks]		
16(b)(i)	An increase in the wavelength (of radiation) received from a receding source	(1)	1
	[accept in terms of a decrease in the frequency]		
16(b)(ii)	Use of $z = v/c$ and $v = H_0 d$ $[z = H_0 d/c]$ $d = 1.7 \times 10^{25} \text{ m}$	(1) (1)	2
	Example of calculation: $v = zc = 0.12 \times 3 \times 10^8 \text{ m s}^{-1} = 3.6 \times 10^7 \text{ m s}^{-1}$ $d = v/\text{H} = 3.6 \times 10^7 \text{ m s}^{-1}/2.1 \times 10^{-18} \text{ s}^{-1} = 1.71 \times 10^{25} \text{ m}$		
*16(c)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Max 3 Dark matter has mass but does not emit e-m radiation [accept light]	(1)	
	(Dark matter proposed when) observations of galaxies indicated that they must contain more matter than could be seen.	(1)	
	The existence of dark matter will increase the (average) density of the universe	(1)	
	This may make it more likely that the universe is closed [accept will contract Or end with a "Big Crunch"] Or Idea that this may make the ultimate fate of the Universe less certain	(1)	3
16(d)	Max 2		
	The universe started from a small initial point [accept Big Bang]	(1)	
	Idea that universe has a finite age	(1)	
	Idea that (observable universe is finite because) we can only see as far as (speed of light) \times (age of universe)	(-)	
	Or light reaching us must have travelled a finite distance since the Big Bang Or some parts of the universe are so distant, light has not had time to reach us yet	(1)	2
	Total for question 16		11

Question	Answer		Mark
Number			
17(a)	A radioactive atom has an unstable nucleus	(1)	
	which emits α , β , or γ radiation [at least one of $\alpha \beta \gamma$ named]	(1)	2
17(b)	$C \rightarrow {}^{11}_5 B + {}^0_1 e^+ + v_e$		
	Top line correct	(1)	
	Bottom line correct	(1)	2
17(c)	Attempt at mass diference calculation	(1)	
	Attempt at conversion from (M)eV to J	(1)	
	$\Delta E = 1.4 \times 10^{-13} (J)$	(1)	3
	Example of calculation:		
	$\Delta E = 10\ 253.6 - 10252.2 - 0.5 = 0.889\ MeV$		
	$\Delta E = 0.889 \text{ MeV} \times 1.6 \times 10^{-13} \text{ J MeV}^{-1} = 1.42 \times 10^{-13} \text{ J}$		
17(d)	The idea that the sample will not produce radiation for very long		
	(because carbon-11 has a relatively short half-life)	(1)	
	B particles are not very ionising Or positrons are not very ionising Or	(1)	2
	boron is sale in small amounts	(1)	2
17(e)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	$(\lambda = 5.68 \times 10^{-4} \text{ s}^{-1})$		
	Use of $A = A_0 e^{-\lambda t}$		
	Use $A = 1.58 \times 10^6$ Bg in $A = 4 e^{-\lambda t}$	(I)	
	$A = 1.2 \times 10^7 \mathrm{Dr}$	(1)	4
	$A_0 = 1.2 \times 10 \text{ Bq}$	(1)	4
	Example of calculation:		
	$\lambda = \frac{0.693}{10^{-4}} = 5.68 \times 10^{-4} \text{ s}^{-1}$		
	$1220s$ = 3.06×10^{-3}		
	$1.58 \times 10^{6} \text{ Bq} = \text{A}_{0} e^{-5.68 \times 10^{-4} \text{ s}^{-1} \times 60 \times 60 \text{ s}}$		
	$A_0 = 1.22 \times 10^7 \text{ Bg}$		
	Total for question 17		13

Question	Answer		Mark
$\frac{18(a)}{18(a)}$	(OWC – Work must be clear and organised in a logical manner using		
10(u)	technical wording where appropriate)		
	(Hooke's Law:) for a spring, force is proportional to extension $Or E = k \Delta x$	(1)	
	$OF F = K \Delta x$	(1)	
	An extension of the spring causes a force towards the equilibrium		
	position	(1)	
	Or (resultant force towards the equilibrium position, so) $ma = -k \Delta x$		
	Condition for shm is restoring force [acceleration] is proportional to displacement (from equilibrium position)	(1)	3
	[QWC question, so max 2 if equations given with no further explanation]		
18(b)	Use of $a = -\omega^2 x$	(1)	
	Use of $T - \frac{2\pi}{2\pi}$		
	$\omega = \omega$	(1)	
	T = 1.55 (s)	(1)	3
	[Credit use of F = k Δx and use of $T = 2\pi \sqrt{\frac{m}{k}}$ for first two marking		
	points]		
	Example of calculation:		
	$\sqrt{0.49 \mathrm{ms}^{-2}}$		
	$\omega = \sqrt{\frac{3.0 \times 10^{-2} \text{ m}}{3.0 \times 10^{-2} \text{ m}}} = 4.04 \text{ s}^{-1}$		
	$T = \frac{2\pi}{1.55} = 1.55$ s		
	4.04 s^{-1}		
18(c)(i)	Damped / damping [Do not accept critical/heavy damping]	(1)	1
18(c)(ii)	Forced / driven	(1)	1
18(c)(iii)	Resonance	(1)	
	$f = 0.65 \text{ Hz}$ [accept c^{-1}]	(1)	2
	[0.625 Hz if show that value is used, 0.64 Hz if unrounded value used]	(1)	2
	Example of calculation:		
	f = 1/1.55 s = 0.645 Hz		
	[allow 2nd mark if they use either their value from (b) or 1.6 s]		
18(d)	(With a smaller mass baby) the natural frequency of oscillation would		
	increase		
	Or The natural frequency of the system would increase		
	The natural frequency of the system would increase		

Or The periodic time of the system would decrease	(1)	
Smaller mass baby would have to kick at a higher frequency (to force system into resonance)	(1)	2
Total for question 18		12

Summer 2013

GCE Physics (6PH05)

Paper 01: Physics Creation/Collapse

Question	Answer	Mark
Number		
1	D	1
2	В	1
3	C	1
4	В	1
5	В	1
6	D	1
7	С	1
8	С	1
9	В	1
10	D	1

Question	Answer	Mar
Number		k
11	There is a red shift [accept Doppler shift] (1)	
	The galaxy is receding O r the galaxy is moving away from us (1)	2
	[Do not accept "the universe is expanding"]	
	Total for question 11	2

Question Number	Answer		Mark
12(a)	Use of electrical power equation e.g. $P = \frac{V^2}{R}$ R = 8.8 Ω [Use of V=IR and P=VI gains mp1]	(1) (1)	2
	$\frac{\text{Example of calculation}}{R = \frac{(230V)^2}{6000W} = 8.82\Omega$		
12(b)	See 30 K [30 °C] Or 6000 J s ⁻¹ Use of $\Delta E = mc\Delta\theta$ [Do not penalise wrong temperature conversions, but $\Delta\theta$ must be a temperature difference]	(1)	
	$\frac{\Delta m}{\Delta t} = 0.048 \text{ kg s}^{-1}$ [accept 0.048 litre s ⁻¹ and other volume flow rates with correct units] <u>Example of calculation</u>	(1)	3
	$\Delta \theta = (37.5 - 7.5) ^{\circ}\text{C} = 30 ^{\circ}\text{C}$ $\frac{\Delta m}{\Delta t} = \frac{6000 \text{W}}{4200 \text{J} \text{kg}^{-1} \text{K}^{-1} \times 30 \text{K}} = 0.0476 \text{kg} \text{s}^{-1}$		
	Total for question 12		5

Question	Answer		Mark
Number			
13(a)	Pendulum C has same/similar length as pendulum X	(1)	
	Therefore C has the same/similar <u>natural</u> frequency as pendulum X Or idea that C is driven at its <u>natural</u> frequency	(1)	
	(Hence) the energy transfer from X to C is most efficient Or		
	There is a maximum transfer of energy from X to C Or	(1)	3
13(b)	Any zero displacement point marked on original graph [do not insist on "P"]	(1)	
	(Minus) cosine graph drawn with same period as original graph	(1)	2
	[Ignore amplitude of graph drawn]		
	Examples of graphs:		
	Displacement		
	This candidate has identified "P" (although not used "P") and the cosine graph is well drawn. [2 marks]		
	0 P Time		
	This candidate has identified "P" correctly, and has drawn a minus cosine graph. Their graph starts from a time of T/4, which is just about acceptable. [2 marks]		
	Displacement 0 P Time		
	This candidate has identified "P" correctly, but has drawn a sine curve. [1 mark]		
	Total for question 13		5

Question	Answer		Mark
Number			
14	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Parallax:		
	The star is viewed from two positions at 6 month intervals Or the star is viewed from opposite ends of its orbit diameter about the Sun	(1)	
	The (change in) angular position of the star relative to fixed/distant stars is measured	(1)	
	The diameter/radius of the Earth's orbit about the Sun must be known and trigonometry is used (to calculate the distance to the star) [Do not accept Pythagoras]	(1)	
	[the marks above may be obtained with the aid of a suitably annotated diagram] e.g		
	nearby star		
	1.01		
	Earth to fixed/		
	Sun (r)		
	Farth 102		
	[Accept the symmetrical diagram seen in many text books]		
	Standard candle:	(1)	
	Flux/brightness/intensity of standard candle is measured	(1)	
	Luminosity of standard candle is known [accept reference to absolute	(1)	
	magnitude Or total power output of star] Inverse square law is used (to calculate distance to standard candle)	(1)	D
	Total for question 14		6

Question	Answer		Mark
Number			
15(a)	Use of $F = \frac{G m_1 m_2}{M_2}$	(1)	
	r^2	(1)	•
	$G = 6.6 \times 10^{-11} (N m^2 kg^{-2})$ [must see 6.6×10^{-11} when rounded to 2 sf]	(1)	2
	Example of calculation		
	$G = \frac{1.5 \times 10^{-7} \text{ N} \times (0.23 \text{ m})^{-7}}{10^{-11} \text{ N} \text{ m}^2 \text{ kg}^{-2}} = 6.61 \times 10^{-11} \text{ N} \text{ m}^2 \text{ kg}^{-2}$		
	$160 \mathrm{kg} \times 0.75 \mathrm{kg}$		
15(b)(i)	Read (peak) times from graph for at least 3 cycles	(1)	
		(1)	2
	T = 6.4 min (± 0.2 min) [T = (380 ± 12) s]		
	[mon 1 month if compart on once of comparishout monthing]		
	[max 1 mark 11 correct answer snown without working]		
	Example of calculation		
	$T = \frac{(28.0 - 2.5)\min}{100} = 6.38\min$		
	4	(1)	
15(b)(ii)	Air resistance acts on the sphere [accept frictional forces Or (viscous) drag	(1)	
	for air resistance]		
	Energy is removed from the oscillation/system	(1)	2
	Or the oscillation/system is damped	(1)	-
	[For mp 2 do not credit 'energy is lost' but accept 'energy is dissipated';		
	answer must indicate idea of transfer of energy]		
15(b)(iii)	Evidence of values of at least 3 consecutive peaks read from graph	(1)	
	[accept values of 3 points separated by equal time intervals]		_
		(1)	3
	Attempt to obtain amplitudes, by subtracting 0.75	(1)	
	Calculation of two values of $A = \sqrt{A}$ with corresponding conclusion		
	Or Calculation of two values of difference of $\ln A_{n+1}$ and $\ln A_n$ with		
	corresponding conclusion	(1)	
	······································		
	Or		
	Use peaks of graph to sketch curve	(1)	
	Use curve to determine "half-life" [accept other ratio]	(1)	
	Calculation of two values of "half-life" with corresponding conclusion	(1)	
	Example of coloulation		
	<u>Example of calculation</u> $A_0 = 1.45 \pm 0.75 \pm 0.7$ $A_1 = 0.75 \pm 0.25 \pm 0.5$ $A_2 = 1.1 \pm 0.75 \pm 0.35$ $A_3 = 0.75$		
	-0.5 = 0.25		

$\frac{A_1}{A_0} = \frac{0.50}{0.70} = 0.71$ $\frac{A_2}{A_1} = \frac{0.35}{0.50} = 0.70$		
$\frac{A_0}{A_1} = \frac{0.35}{0.50} = 0.70$		
$A_1 = 0.50$		
A = 0.25		
$\frac{A_3}{A_2} = \frac{0.25}{0.35} = 0.71$		
Total for question 15	0	
Question	Answer	Mark
-----------	--	------
Number	$T_{\text{construct}}\left(af(x,y)\left[t_{\text{construct}}af(x,y), t_{\text{construct}}af(x,y)\right]\right) $	
10(a)	(1) (1)	2
	Mass of air/gas Or number of atoms/molecules/moles of air/gas	-
	[accept amount of air/gas, number of particles of air/gas]	
16(b)	Assumption: idea that volume occupied by trapped air \propto length of air in tube [a g volume – gross sectional gross v length]	
	$tube [e.g. volume = cross-sectional area \times length] $ (1)	
	pL = a constant [accept $pV = a constant]$ Or if p doubles, L halves	
	(1)	
	At least 2 pairs of p , L values correctly read from graph (1)	
	(1)	1
	Readings show that $pL = 4500$ (kF a cm) [± 100 kF a cm]	-
	Or Readings show that p doubles when L is halved (1)	
	[Accept references to V instead of L]	
	Example of calculation	
	$p = 400 \text{ kPa}, L = 11.0 \text{ cm}$ $pL=400 \times 11.0 = 4400$	
	p = 200 kPa, L = 23.0 cm $pL=200 \times 23.0 = 4600$	
16(c)	Use of $pV=NkT$ [Allow use of $pV=nRT$ and $N=n.N_A$] (1)	
	Conversion of temperature to kelvin (1)	
	$N = 8.4 \times 10^{20} \text{ [Accept answers in range } 8.1 \times 10^{20} \text{ to } 8.4 \times 10^{20} \text{]} $ (1)	3
	[Answer in range but with an incorrect temperature conversion score	
	max 2]	
	Example of calculation	
	$_{N} = 450 \times 10^{3} \text{ Pa} \times 0.10 \text{ m} \times 7.5 \times 10^{-5} \text{ m}^{2} = 8.35 \times 10^{20}$	
	$\frac{1}{1.38 \times 10^{-23} \text{JK}^{-1} \times (273 + 20) \text{K}} = 0.55 \times 10^{-10} \text{K}$	
16(d)(i)	No change (1)	1
16(d)(ii)	Similar curve (1)	
10(0)(11)	Shifted higher Or shifted to the right (1)	2
	[an annotated diagram can score full marks]	
		10
	1 otal for question 16	12

Question Number	Answer		Mark
17(a)(i)	Reverse direction for temperature [at least 2 values seen]	(1)	
	Logarithmic/power temperature variation [at least 3 realistic values seen increasing by the same factor]	(1)	2
17(a)(ii)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Area 1: Max 2 The Sun is fusing/burning hydrogen (into helium in its core)	(1)	
	When (hydrogen) fusion/burning ceases the core of the Sun cools [accept radiation pressure drops when fusion/burning ceases in the core]	(1)	
	The core collapses/contracts (under gravitational forces)	(1)	
	Area 2: Max 2	(1)	
	The Sun expands and becomes a red giant The core becomes hot enough for helium fusion/burning to begin (in the	(1)	
	Helium begins to run out and the core collapses again (under gravitational forces)	(1)	
	Area 3: Max 2	(1)	
	Idea that outer layers of Sun are ejected into space The temperature doesn't rise enough for further fusion to begin	(1) (1)	6
	The core/Sun becomes a (white) dwarf star		
17(b)(i)	Idea of a very high temperature [accept value of about 10^7 K]	(1)	
	To overcome repulsive/electrostatic forces between protons/nuclei Or so that protons/nuclei get close enough together for the strong		
	Or so that protons/nuclei get close enough to fuse	(1)	
	Idea of a very high density [accept pressure] to give a sufficient collision rate	(1)	3
17(b)(ii)	Attempt at calculation of mass deficit	(1) (1)	
	Use of $\Delta E = c^2 \Delta m$	(1) (1)	
	Attempt at conversion from J to (M)eV	(1)	4
	$\Delta E = 12.9 \text{ (MeV)}$		
	[If correct mass defect in kg is converted into u and then $1u = 931$ Mev used, then full marks may be awarded]		
	Example of calculation $\Delta m = ((5.008238 \times 2) - 6.646483 - (1.673534 \times 2)) \times 10^{-27} \text{ kg}$		

$\Delta m = 2.2925 \times 10^{-29} \text{ kg}$]
$\Delta E = (3.00 \times 10^8 \mathrm{ms}^{-1})^2 \times 2.2925 \times 10^{-29} \mathrm{kg} = 2.063 \times 10^{-12} \mathrm{J}$		
$\Delta E = \frac{2.063 \times 10^{-12} \mathrm{J}}{1.60 \times 10^{-13} \mathrm{J} \mathrm{MeV}^{-1}} = 12.9 \mathrm{MeV}$		
Total for question 17	15	

Question	Answer		Mark
$\frac{18}{(2)(i)}$	Use of $1 t = \ln 2$	(1)	
10 (a)(1)	$ \lambda = 5.8 \times 10^{-8} (\text{s}^{-1}) $	(1) (1)	
	Use of $\frac{\Delta N}{\Delta t} = -\lambda N$	(1)	
	$\frac{\Delta N}{\Delta t} = (-)1.5 \times 10^8 \text{Bq} \text{ [accept } \text{s}^{-1} \text{ Or counts s}^{-1}\text{]}$	(1)	4
	$\frac{\text{Example of calculation}}{\lambda = \frac{0.693}{(138 \times 24 \times 3600)s} = 5.81 \times 10^{-8} s^{-1}}$		
	$\frac{\Delta N}{\Delta t} = -5.81 \times 10^{-8} \mathrm{s}^{-1} \times 2.54 \times 10^{15} = -1.48 \times 10^{8} \mathrm{Bq}$		
18(a)(ii)	Use of $N = N_0 e^{-\lambda t}$	(1)	
	Fraction of nuclei remaining = 0.90 10% of nuclei have decayed [accept 0.1 Or 1/10]	(1) (1)	3
	Example of calculation $t = 21 \times 24 \times 3600 \text{ s} = 1\ 814\ 400 \text{ s}$		
	$\frac{N}{N_0} = e^{-5.81 \times 10^{-8} s^{-1} \times 1.81 \times 10^6 s}$		
	$\frac{N}{N} = e^{-0.105} = 0.900$		
	Fraction decayed = $1 - 0.9 = 0.1$		
18(b)	Idea that α -particles are not able to penetrate the (dead layer of) skin	(1)	
	(from outside the body) Damage/danger if energy is transferred to cells/DNA		
	Or damage/danger to cells/DNA due to ionisation	(1)	2
18 (c)(i)	$^{210}_{84}Po \rightarrow ^{206}_{82}Pb + ^{4}_{2}\alpha$		
	Top line correct	(1) (1)	2
	Bottom line correct		
18 (c)(ii)	So that momentum is conserved	(1)	1
18 (d)	Spontaneous means that the decay cannot be influenced by any external factors.	(1)	
	Random means that we cannot identify which atom/nucleus will (be the next to) decay		
	Or we cannot identify when an individual atom/nucleus will decay Or we cannot state exactly how many atoms/nuclei will decay in a set		
	time	(1)	
	Or we can only estimate the fraction of the total number that will decay in the next time interval		2
18 (d)	Spontaneous means that the decay cannot be influenced by any external factors. Random means that we cannot identify which atom/nucleus will (be the next to) decay Or we cannot identify when an individual atom/nucleus will decay Or we cannot state exactly how many atoms/nuclei will decay in a set time Or we can only estimate the fraction of the total number that will decay in the next time interval	(1)	2

18(e)	Idea that traces of the isotope will be excreted from the body (and		
	deposited in the surroundings)	(1)	
	Idea that the half life is long enough for the activity to be detectable for a		
	long time	(1)	2
	Total for question 18		16

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA036646 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

